Progress in Energy and Combustion Science 38 (2012) 449—467

Contents lists available at SciVerse ScienceDirect

PROGRESS IN
ENERGY AND
COMBUSTION SCIENCE

Progress in Energy and Combustion Science

journal homepage: www.elsevier.com/locate/pecs

Review

Lignocellulosic biomass for bioethanol production: Current perspectives, potential

issues

and future prospects

Alya Limayem *P, Steven C. Ricke *>*

@ Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA
b Center for Food Safety, University of Arkansas, Fayetteville, AR 72704, USA

ARTIC

LE INFO ABSTRACT

Article history:

During the most recent decades increased interest in fuel from biomass in the United States and

Received 4 April 2011 worldwide has emerged each time petroleum derived gasoline registered well publicized spikes in price.

Accepted 25 October 2011
Available online 11 April 2012

The willingness of the U.S. government to face the issues of more heavily high-priced foreign oil and
climate change has led to more investment on plant-derived sustainable biofuel sources. Biomass derived

Keywords:

Lignocellulosic feedstocks

Bioethanol

Fermentation
Bioconversion
Risk assessme

from corn has become one of the primary feedstocks for bioethanol production for the past several years
in the U.S. However, the argument of whether to use food as biofuel has led to a search for alternative
non-food sources. Consequently, industrial research efforts have become more focused on low-cost
large-scale processes for lignocellulosic feedstocks originating mainly from agricultural and forest resi-
dues along with herbaceous materials and municipal wastes. Although cellulosic-derived biofuel is
nt a promising technology, there are some obstacles that interfere with bioconversion processes reaching
optimal performance associated with minimal capital investment. This review summarizes current
approaches on lignocellulosic-derived biofuel bioconversion and provides an overview on the major
steps involved in cellulosic-based bioethanol processes and potential issues challenging these operations.
Possible solutions and recoveries that could improve bioprocessing are also addressed. This includes the
development of genetically engineered strains and emerging pretreatment technologies that might be
more efficient and economically feasible. Future prospects toward achieving better biofuel operational
performance via systems approaches such as risk and life cycle assessment modeling are also discussed.
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1. Introduction

The agreement implemented by Policy Energy Act (PEA) [1]
followed by the Energy Independence and Security Act (EISA)
[2] aims to reach 36 billion gallons (136.27 L) of bioethanol by
the year 2022. Rising concern over depleting fossil fuel and
greenhouse gas limits has resulted in a high level of interest in
non-conventional fuel originating from bio-renewable sources
including sugars, starches and lignocellulosic materials [3—8].
During the last decade, the production of ethanol from biomass
materials received more attention in the United States (U.S.) and
worldwide. In the U.S., bioethanol is primarily produced from corn
starch feedstocks while in Brazil biofuel is mainly produced from
sugarcane juice and molasses. Together, these countries account for
89% of the current global bioethanol production [9].

Several countries have initiated new alternatives for gasoline
from renewable feedstocks [10]. In the North American hemi-
sphere, bioethanol has been extracted from starch sources such as
corn while in the South American hemisphere, biofuel has been
largely provided from sugars including sugarcane and sugar beets
[11]. While European countries are deploying extensive efforts to
increase their 5% worldwide bioethanol production [12], biodiesel
produced in Europe primarily in France and Germany remains by
far more substantial and accounts for approximately 56% of the
global production mainly because of the rising importance of diesel
engines and feedstock opportunity costs [13]. Although, most of the
remaining countries in the world collectively account for only 5% of
the global bioethanol production, China, Thailand as well as India
are continuing to invest substantially in agricultural biotechnology
and emerge as potential biofuel producers [14,15]. In the U.S,,
biofuel-derived from corn has emerged as one of the primary raw
materials for bioethanol production [16]. According to the renew-
able fuels association [9] statistics, the production of bioethanol
was historically unparalleled in the U.S. by year 2009 with name-
plate capacity reaching 10.9 billion gallons (41.26 billion litres)
representing 55% of the worldwide production. In the year 2010
corn-based ethanol operating productions generated a total of
12.82 billion gallons (48.52 billion litres) with the largest name-
plate capacity in lowa (28%) followed by Nebraska (13%) [17].

Although corn-based and sugar based-ethanol are promising
substitutes to gasoline production mainly in the transportation
sector, they are not sufficient to replace a considerable portion
of the one trillion gallons of fossil fuel presently consumed
worldwide each year [18]. Furthermore, the ethical concerns about
the use of food as fuel raw materials have encouraged research
efforts to be more focused on the potential of inedible feedstock
alternatives [19—21]. Lignocellulosic biomass materials constitute

a substantial renewable substrate for bioethanol production that
do not compete with food production and animal feed. These
cellulosic materials also contribute to environmental sustainability
[22]. Additionally, lignocellulosic biomass can be supplied on
a large-scale basis from different low-cost raw materials such as
municipal and industrial wastes, wood and agricultural residues
[23]. Currently the most promising and abundant cellulosic feed-
stocks derived from plant residues in the U.S., South America, Asia
and Europe are from corn stover, sugarcane bagasse, rice and wheat
straws, respectively [24—27].

However, lignocellulosic-based feedstock is a recalcitrant
material that requires an intensive labor and high capital cost for
processing [28]. Hence, these procedures currently are not
economically feasible. When considering enzymatic or acidic
decomposition of lignocellulosic structure, it must be taken into
account that p-xylose is the second important sugar forming the
hemicellulosic portion of the plant cell wall and constituting one-
third of the sugars in the lignocellulosic feedstock [29]. However,
the primary industrial yeast used in bioethanol production,
Saccharomyces cerevisiae converts only hexose sugars such as
glucose and is not able to co-ferment glucose and xylose [30].

There are four stages in the production of lignocellulosic-based
ethanol: pretreatment, hydrolysis, fermentation and distillation.
During the past decades, there have been substantial advances in
genetic and enzymatic technologies that have helped to improve
these steps of ethanol production and expand the capability of
S. cerevisiae for fermenting different sugars simultaneously [31].
Although there is a wide range of fungal and recombinant bacteria
that are able to ferment xylose sugar, they are not all capable of
adapting to fermentation-process conditions and some of them
produce only low ethanol yields. Their tolerance to ethanol and
productivity still require further refinements [32,33]. Moreover,
cellulosic materials contain microbial contaminants that compete
with the fermenting yeast for nutrients and these contaminants can
produce toxic end-products. Both of these adverse conditions can
create a considerable loss in ethanol yields [34,35]. Additionally,
pretreatment processes may result in the formation of toxic
components including primarily, acetic acid along with furfural,
hydroxymethyl furfural and phenolic components [36,37].
However, in addition to the formation of fermentation inhibitors
during biofuel production, there is occurrence of lignin side effects
on enzymatic hydrolysis and cellulase inhibitors including
primarily phenolic-derived lignin [38,39]. Lignin and derivative
effects are extensively reviewed in a later section.

This review examines what is currently known regarding
recent technologies and approaches that are used in derived-
lignocellulosic biofuel production. This review also provides
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a summary of the current bottlenecks and barriers that interfere
with the lignocellulosic based-ethanol pathway and places the
emphasis on potential issues challenging biotechnological
conversion and bioethanol performance. Specific focus is directed
toward describing current solutions and possible systematic
remedies that could be adopted to circumvent lignocellulosic-
derived ethanol problems and strategies for the bioethanol
industry to become more economically feasible and therefore
commercially viable. Future prospects for the systematic optimi-
zation of lignocellulosic bioconversion are also addressed.

2. Historical and current trends of biofuel in the U.S.

Little attention was focused on bioethanol production in the U.S.
before 1860 when Nicholas Otto initiated the use of ethanol as
a fuel for engine combustion. As early as 1908, Henry Ford was
already aware of the promising substitute to gasoline, ethanol. This
led to the development of the Ford Model T capable of operating off
of gasoline, ethanol or combinations of both [40]. At that time, the
potential for fuel ethanol received only moderate consideration due
to the dominance of low priced petroleum derived gasoline.

Interest in ethanol from biomass such as corn starch emerged in
the 1970s when the price of fossil fuel rose and methyl tertiary
butyl ether (MTBE) used in gasoline was identified as an environ-
mental pollutant agent [41]. Moreover, the willingness of the U.S. to
stay independent from high-priced foreign oil, led the federal
government to implement new research programs directed toward
the development of more sustainable alternative fuels originating
from renewable sources. Between 1980 and 1990, there was
a considerable effort from the government to boost industrial
efforts toward manufacturing fuel from biomass materials by
adjusting tax-exemptions and encouraging bioethanol research
and development programs. Biofuel production grew exponentially
from approximately 200 million gallons (757 million litres) in 1982
to 2.9 billion gallons (10.9 billion litres) in 2003 [42]. The PEA [1]
implemented in 2005 followed by the EISA [2] in 2007 was
accompanied by a partnership between the U.S. and Brazil, the
world’s largest biofuel producer at the time.

In 2009, bioethanol-based production achieved an unprece-
dented increase (approximately 11 billion gallons, 41 billion litres).
In the year 2010, the U.S. became the world’s leading biofuel
producer and exporter with 13.5 billion gallons (51 billion litres)
nameplate capacity. Almost 200 operational corn-based ethanol
plants are currently operating in 29 states [42] most of them are
located in the “corn belt” in the U.S. Midwest [12]. It was also
reported in 2010 that despite the global economic-burden, bio-
ethanol production continues to expand rapidly and to contribute
significantly to the economic development of rural communities
in the U.S. [42]. Although the price of most food products has
increased, corn prices have not substantially been altered.
However, the debate of whether to use plants as a fuel feedstock or
as human food remains a controversial issue. This debate has led
researchers to work on more acceptable sources containing ligno-
cellulosic biomass that are derived mainly from agricultural resi-
dues, industrial wastes, forest biomass and other herbaceous
materials [42].

3. Lignocellulosic sources and composition
3.1. Lignocellulosic sources

Lignocellulosic material constitutes the world’s largest bio-
ethanol renewable resource. In the U.S. alone the production of

biomass from lignocellulosic materials is estimated to be nearly 1.4
billion dry tons per year, 30% originating from forest biomass [43].

There are several groups of raw materials that are differentiated by
their origin, composition and structure. In the U.S. most cultivated
land constitutes around 35% of the forestland, approximately 27%
grazed land as well as herbaceous and 19% crop lands per
approximately 2.25 billion acres (9.0 million km?) [44,45]. Forest-
land materials include mainly woody biomass namely, hardwoods
and softwoods followed by sawdust, pruning and bark thinning
residues while pasture and grassland encompass primarily agri-
cultural residues that cover food or non-food crops and grasses
such as switch grass and alfalfa [46]. Municipal and industrial
wastes are also potential recyclable cellulosic materials that can
originate either from residential or non-residential sources such as
food wastes and paper mill sludge [46,47]. Annual total tonnage
available is summarized in Table 1.

3.1.1. Forest woody feedstocks

Forest woody feedstocks account for approximately 370 million
tons per year (30%) of lignocellulosic biomass in the U.S. [43]. There
are two types of woody materials that are classified into broad
categories of either softwoods or hardwoods. Softwoods originate
from conifers and gymnosperm trees [48] and unlike hardwoods,
softwoods possess lower densities and grow faster. Gymnosperm
trees, include mostly evergreen species such as pine, cedar, spruce,
cypress, fir, hemlock and redwood [49]. Hardwoods are angiosperm
trees and are mostly deciduous [50]. They are mainly found in the
Northern hemisphere and include trees such as poplar, willow, oak,
cottonwood and aspen. In the U.S., hardwood species account for
over 40% of the trees [51]. The genus Populus (cottonwood) which
includes 35 species is the most abundant fast-growing species
suitable for bioethanol production. Populus deltoids species cover
most of North America from the eastern to midwestern U.S., while
Populus trichocarpa covers primarily the western U.S.[52]. Unlike
agricultural biomass, woody raw materials offer flexible harvesting
times and avoid long latency periods of storage [53]. Additionally,
this study reported that woody feedstock possessed more lignin
than agricultural residues and less ash content (close to zero). These
unique characteristics of woody biomass including primarily high
density and minimal ash content make woody raw material very
attractive to cost-effective transportation in conjunction to its
lower content in pentoses over agricultural biomass and more
favorable for greater bioethanol conversion if recalcitrance is sur-
mounted [53]. Forestry wastes such as sawdust from sawmills,
slashes, wood chips and branches from dead trees have also been
used as bioethanol feedstocks [43].

3.1.2. Agricultural residues, herbaceous and municipal solid wastes
(MSW)

Crops residues consist of an extensive variety of types. They are
mostly comprised of agricultural wastes such as corn stover, corn
stalks, rice and wheat straws as well as sugarcane bagasse [54].
There are approximately 350—450 million tons per year (127
million metric tons to 317.5 million metric tons) harvested annually
in the U.S. [42,43,54] with residues originating primarily from rice

Table 1
Annual total tonnages of biomass for biofuel in the U.S. (U.S. Department of Energy
Biomass Program, 2009) [54].

Biomass Million dry tons/year
Agricultural residues 428
Forest resources 370
Energy crops 377
Grains and corn 87
Municipal and industrial wastes 58
Others (i.e., oilseeds) 48
Total 1368
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and wheat straws as well as corn stalks being considered the bio-
ethanol feedstocks with the most potential. Crop residues contain
more hemicellulosic material than woody biomass (approximately
25—-35%) [55]. Aside from being an environmentally friendly
process, agricultural residues help to avoid reliance on forest-
woody biomass and thus reduce deforestation (non-sustainable-
cutting plants). Unlike trees, crop residues are characterized by
a short-harvest rotation that renders them more consistently
available to bioethanol production [25,26].

Switch grass is the primary herbaceous prairie grass and energy
crop that grows in the plains of the North American hemisphere,
namely, Canada and the U.S. These perennial grasses are of interest
due to their low-cost investment as well as abundance in the US,,
their ability to resist diseases, and their high yield of sugar substrates
per acre. Moreover, switch grass is low maintenance requiring little or
no fertilization. Miscanthus giganteus is another fast-growing grass
that is a potentially optimal candidate for bioethanol production. It is
native to Asia and is grown in Europe for combustible energy use [56].
In addition to cellulosic feedstocks, municipal and industrial solid
wastes are also a potential raw material for biofuel production. Their
utilization limits environmental problems associated with the
disposal of garbage household, processing papers, food-processing
by-products, black liquors and pulps [57].

Although over one billion tons of biomass per year would be
potentially available to meet the 30% replacement of petroleum-
derived gasoline in 2030 [43], the high cost of biomass could be
a serious hindrance if potential lands and feedstocks are not
managed and utilized efficiently [57]. While woody biomass and
agricultural residues potential was overestimated in 2005, high-
yielding energy crops including primarily Miscanthus have started
to regain considerable interest compared to woody and agricultural
residues because of their potential to cover 50—70% of the total
feedstock [57]. According to this study, in addition to the possible
one billion tons of various feedstocks that would be available, an
additional cultivation of high yielding energy crops on Conserva-
tion Reserve Program (CRP) lands that are efficiently managed
would be the key option to meet a 30% petroleum-based gasoline
displacement in 2030. However, a more recent research study
concluded that bioethanol production has already reached the
saturation level just to cover the blending limit of 10% of bioethanol
which could be a substantial obstacle for further increases to reach
EISA (2007) projections [58,59].

3.1.3. Marine algae

Interest in algae as a potential biofuel feedstock has existed
since 1978 in the U.S. and has recently received support by the DOE
Aquatic Program [54]. Special focus was directed to assess several
aspects of algae biomass including the estimation of its produc-
tivity per acre, water consumption and non-food feedstocks with
respect to by- and co-products recovered during biofuel produc-
tion. However, improving the efficiency of algae feedstock and thus
its development as a viable and scalable source commercial
enterprise remained limited during the 20th century.

More recently, marine algae biomass is regaining interest as
a third generation biofuel feedstock due to the rapid biorefineries
expansion leading to a shortage on current energy crops designated
for bioethanol and biodiesel industries. Aside from being potential
bioethanol biomass, algae would also be a feedstock for other
biofuels including mainly, biodiesel and fuel for aviation in addition
to other possible applications involving bio-crude oils, bio-plastics
and recovered livestock co-products [60]. Furthermore, algae
feedstock with its thin cellulose layer has a high carbohydrate
composition making it capable of yielding 60 times more alcohol
than soybeans per acre of land [61]. It also provides 10 times more
ethanol than corn per growing area [62]. Unlike corn and sugar-
cane, algae biomass does not compete directly with foods and does
not require agricultural land or use of fresh water to be cultivated. It
consumes a high level of CO, during its growth, which makes it
environmentally attractive as a CO sink [63].

3.2. Lignocellulosic biomass composition

Lignocellulosic material can generally be divided into three
main components: cellulose (30—50%), hemicellulose (15—35%)
and lignin (10—20%) [64—67]. Cellulose and hemicelluloses make
up approximately 70% of the entire biomass and are tightly linked
to the lignin component through covalent and hydrogenic bonds
that make the structure highly robust and resistant to any treat-
ment [25,66,68]. Potential lignocellulosic feedstocks and their
composition are summarized in Table 2.

3.2.1. Hemicellulose

Hemicellulose is an amorphous and variable structure formed of
heteropolymers including hexoses (p-glucose, p-galactose and
p-mannose) as well as pentose (p-xylose and L-arabinose) and may
contain sugar acids (uronic acids) namely, p-glucuronic, p-galactur-
onic and methylgalacturonic acids [69,70]. Its backbone chain is
primarily composed of xylan § (1—4)-linkages that include p-xylose
(nearly 90%) and i-arabinose (approximately 10%) [67]. Branch
frequencies vary depending on the nature and the source of feed-
stocks. The hemicelluloses of softwood are typically glucomannans
while hardwood hemicellulose is more frequently composed of
xylans [69]. Although the most abundant component in hemi-
cellulose, xylan composition still varies in each feedstock [71].
Because of the diversity of its sugars, hemicellulose requires a wide
range of enzymes to be completely hydrolyzed into free monomers.

3.2.2. Cellulose

Cellulose is a structural linear component of a plant’s cell wall
consisting of a long-chain of glucose monomers linked § (1—4)-
glycosidic bonds that can reach several thousand glucose units in
length. The extensive hydrogen linkages among molecules lead to
a crystalline and strong matrix structure [72]. This cross-linkage of
numerous hydroxyl groups constitutes the microfibrils which give
the molecule more strength and compactness. Although starchy
materials require temperatures of only 60—70 °C to be converted

Table 2
Potential lignocellulosic biomass source and composition (% dry weight).
Raw material Hemicelluloses Cellulose Lignin Others (i.e., ash) References
Agricultural residues 25-50 37-50 5-15 12—-16 [14,54,63,189]
Hardwood 25—-40 45-47 20-25 0.80
Softwood 25-29 40-45 30-60 0.50
Grasses 35-50 25—40 -2 -
Waste papers from chemical pulps 12—-20 50—-70 6—10 —
Newspaper 25-40 40-55 18-30 -
Switch grass 30-35 40—-45 12 -

2 Not present.
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from crystalline to amorphous texture, cellulose requires 320 °C as
well as a pressure of 25 MPa to shift from a rigid crystalline
structure to an amorphous structure in water [73]. Cellulose is the
most prevalent organic polymer and is approximately 30% of the
plant composition [54]. Cotton, flax and chemical pulp represent
the purest sources of cellulose (80—95% and 60—80%, respectively)
while soft and hardwoods contain approximately 45% cellulose
[55,56,64].

3.2.3. Lignin

Lignin is an aromatic and rigid biopolymer with a molecular
weight of 10,000 Da bonded via covalent bonds to xylans (hemi-
cellulose portion) conferring rigidity and high level of compactness
to the plant cell wall [66]. Lignin is composed of three phenolic
monomers of phenyl propionic alcohol namely, coumaryl, coniferyl
and sinapyl alcohol. Forest woody biomass is primarily composed
of cellulose and lignin polymers. Softwood barks have the highest
level of lignin (30—60%) followed by the hardwood barks (30—55%)
while grasses and agricultural residues contain the lowest level of
lignin (10—30% and 3—15%, respectively) [55,64]. Conversely, crop
residues such as corn stover, rice and wheat straws are comprised
mostly of a hemicellulosic heteropolymer that includes a large
number of 5-carbon pentose sugars of primarily xylose [74].
Previously, little interest has been given to lignin chemistry
potential on hydrolysis. However, lignin components are gaining
importance because of their dilution effect on the process once
solids are added to a fed batch hydrolytic or fermentation biore-
actor in addition to their structure and concentration effects that
would affect potential hydrolysis [75]. For instance, the adsorption
of lignin to cellulases requires a higher enzyme loading because this
binding generates a non-productive enzyme attachment and limits
the accessibility of cellulose to cellulase [76]. Furthermore, phenolic
groups are formed from the degradation of lignin. These compo-
nents substantially deactivate cellulolytic enzymes and hence
influence enzymatic hydrolysis. This negative impact caused by
lignin has led to interest in lowering the lignin negative effect. Chen
et al. (2006) [76] demonstrated that lignin modification via
genetically engineering practices targeting its biosynthetic path-
ways could considerably reduce lignin formation and improve
ethanol yield. However, this could be somewhat problematic as
lignin components serve as the major plant defense system to
pathogen and insects and its modification could disrupt the plants’
natural protection [77]. Retaining the lignin could have benefits as
Ladisch et al. [75] have demonstrated that lignin components, once
recovered from biofuel process may be a potential energy self-
sustaining source to retain biorefineries financial solvency.

4. Pathways of bioethanol production from cellulosic
feedstocks

Lignocellulosic biomass can be transformed into bioethanol via
two different approaches, (i.e. biochemical or thermochemical
conversion) [78]. Both routes involve degradation of the recalci-
trant cell wall structure of lignocellulose into fragments of lignin,
hemicellulose and cellulose. Each polysaccharide is hydrolyzed into
sugars that are converted into bioethanol subsequent followed by
a purification process [79,80]. However, these conversion routes do
not fundamentally follow similar techniques or pathways. The
thermochemical process includes gasification of raw material at
a high temperature of 800 °C followed by a catalytic reaction.
Application of high levels of heat converts raw material into
synthesis gas (syngas) such as hydrogen, carbon monoxide and CO,.
In the presence of catalysts, the resulting syngas can be utilized by
the microorganism Clostridium ljungdahlii to form ethanol and
water can be further separated by distillation [81].

Unlike the thermochemical route, biochemical conversion
involves physical (i.e. size reduction) or/and thermo-chemical with
possible biological pretreatment [82]. Biochemical pretreatment
is mainly used to overcome recalcitrant material and increase
surface area to optimize cellulose accessibility to cellulases
[53,82,83]. The upstream operation is followed by enzymatic or
acidic hydrolysis of cellulosic materials (cellulolysis) and conver-
sion of hemicellulose into monomeric free sugars (saccharification)
subsequent to biological fermentation where sugars are fermented
into ethanol and then purified via distillation [79,81]. Concurrently,
lignin, the most recalcitrant material of cell walls is combusted and
converted into electricity and heat [80]. Overall, biochemical
approaches include four unit-operations namely, pretreatment,
hydrolysis, fermentation and distillation [84,85]. Currently the
biochemical route is the most commonly used process [86]. Fig. 1
adopted from Ladisch et al. [75] provides a flow diagram illus-
trating the major steps involved in biochemical process with lignin
co-product recovery for a self-sufficient energy system.

4.1. Pretreatment overview

Effective pretreatment is fundamental for optimal successful
hydrolysis and downstream operations [87]. Pretreatment
upstream operations include mainly physical, (i.e., biomass size-
reduction) and thermochemical processes that involve the
disruption of the recalcitrant material of the biomass. This
upstream operation increases substrate porosity with lignin
redistribution. Therefore, it enables maximal exposure of cellulases
to cellulose surface area to reach an effective hydrolysis with
minimal energy consumption and a maximal sugar recovery
[53,82,83,88]. Fig. 2 illustrates the major outcomes from pretreat-
ment upstream processes subsequent to hydrolysis and fermenta-
tion operations. Zhu and Pan [53] concluded that the pretreatment
process of woody biomass differs substantially from the agricul-
tural biomass due to differences in their chemical composition and
physical properties. Unlike woody biomass, agricultural residues
pretreatment does not require as much energy as recalcitrant
woody material to reach size reduction for further enzymatic
saccharification. This study placed emphasis on the importance of
the energy consumption from the mechanical operation (size-
reduction) primarily based on the estimation of woody biomass
pretreatment energy efficiency (9pretreatment — Total sugar recovery
(kg)/Total energy consumption (My])). In addition to sugar recovery
and ethanol yield, this energy efficiency ratio and mass balance was
deemed crucial for the complete estimation of pretreatment effi-
ciency [53,89—-91]. Toxic inhibitory level estimation has also been
considered important for evaluating pretreatment cost-
effectiveness primarily when dilute acid is added. Costly detoxifi-
cation steps could be a major hindrance to reach high-performance
pretreatment [36,92]. Overall, the ratio including energy
consumption versus sugar yield with regard to feed stock versatility
[53,89] as well as toxic inhibitors formed per level of sugars
recovered are of prime consideration on the estimation of the
pretreatment efficiency and cost effectiveness of the operation in
an effort to reach optimal conditions [93].

Several pretreatment methods, namely, mechanical, chemical
or microbiological have been used to remove the recalcitrant cell
wall material of lignocellulosic biomass depending on the raw
material being extracted [93,94]. More recently, there has been
considerable advancement in development of pretreatment
processes [19,23,94—96]. Table 3 illustrates some of the pretreat-
ment methods that have been examined over the years. Although
most of these treatments can liberate hemicellulose and cellulose
from the cell wall, some of them remain economically unfeasible
due to key technical issues. Furthermore, they are not all able to
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overcome the recalcitrant material found mainly in wood-based
feedstocks. Typically, few treatments are endowed with ability
to overcome feedstock versatility [97,98]. Unlike agriculture resi-
dues, forest and wood materials are high in lignin (approximately
29%) and cellulose (approximately 44%) [55] which renders them
more recalcitrant. Agricultural residues such as corn stover, rice and
wheat straws are mostly composed of hemicellulose (32%) and low
levels of lignin (3—13%) conferring to them a less resistant texture
but a higher level of pentose sugars rendering them less practical
than woody recalcitrant material.

The most prevalent treatments include acid hydrolysis, hot
water, dilute acid pretreatment and lime [92,93,99—108]. However,
the conventional methods using acidic treatments (usually dilute

sulfuric acid with concentrations below 4 wt% and temperatures
greater than 160 °C) [109] are always accompanied by formation of
toxic inhibitors such as furfural from xylose and hydroxymethyl
furfural (HMF) from glucose in addition to phenolics and acetic acid
[20,36,93,110]. Acetic acid resulting from dilute acid pretreatment
of agricultural residues as well as herbaceous and hardwoods is pH
dependent and can reach a high concentration of approximately
10 g/L [20,36] that is more difficult to separate and detoxify than
HMF and furfural. Unlike dilute acid pretreatment, ammonia fiber
explosion (AFEX) treatments are sufficient to hydrolyze primarily
agricultural residues such as corn stover and have not been asso-
ciated with the formation of toxic products including HMF [97].
Given that woody feedstock is gaining increasing attention for its
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attractive attributes over low-lignin materials, organosolv along
with steam explosion [111] and sulfite pretreatment to overcome
recalcitrance (SPORL) [112] have become of prime interest for their
ability to degrade high-lignin forest materials [53,112]. A recent
study reported that steam explosion consumed the highest level of
energy yielding the lowest pretreatment energy efficiency ratio of
0.26 kg sugar/M] when compared to organosolv (0.31-0.40 kg
sugar/M]) and SPORL (0.35—043 kg sugar/M]) [53]. While the
organosolv treatments degrade high-lignin woody biomass
including both softwood and hardwood, they produce considerable
quantities of inhibitors namely furfural and HMF, yield a low
hemicellulosic sugar concentration and are also associated with
a high capital investment [113]. Consequently, SPORL remains the
most attractive candidate for its flexibility and ability to overcome
both hardwood and softwood recalcitrance with the highest sugar
recovery and lowest energy consumption [53].

4.2. Hydrolysis

The success of the hydrolysis step is essential to the effectiveness
of a pretreatment operation [80]. During this reaction, the released
polymer sugars, cellulose and hemicellulose are hydrolyzed into
free monomer molecules readily available for fermentation
conversion to bioethanol [79]. There are two different types of
hydrolysis processes that involve either acidic (sulfuric acid) or
enzymatic reactions [114]. The acidic reaction can be divided into
dilute or concentrated acid hydrolysis. Dilute hydrolysis (1—3%)
requires a high temperature of 200—240 °C to disrupt cellulose
crystals [115]. It is followed by hexose and pentose degradation and
formation of high concentrations of toxic compounds including
HMF and phenolics detrimental to an effective saccharification [19].
The Madison wood-sugar process was developed in the 1940s to
optimize alcohol yield and reduce inhibitory and toxic byproducts.
This process uses sulfuric acid H,SO4 (0.5 wt%) that flows continu-
ously to the biomass at a high temperature of 150—180 °C in a short
period of time allowing for a greater sugar recovery [116]. Concen-
trated acid hydrolysis, the more prevalent method, has been
considered to be the most practical approach [102]. Unlike dilute

acid hydrolysis, concentrated acid hydrolysis is not followed by high
concentrations of inhibitors and produces a high yield of free sugars
(90%); however, it requires large quantities of acid as well as costly
acid recycling, which makes it commercially less attractive [117].
While acid pretreatment results in a formation of reactive
substrates when acid is used as a catalyst, acid hydrolysis causes
significant chemical dehydration of the monosaccharides formed
such that aldehydes and other types of degradation products are
generated [19]. This particular issue has driven development of
research to improve cellulolytic-enzymes and enzymatic hydro-
lysis. Effective pretreatment is fundamental to a successful enzy-
matic hydrolysis [118]. During the pretreatment process, the
lignocellulosic substrate enzymatic digestibility is improved with
the increased porosity of the substrate and cellulose accessibility
to cellulases. Trichoderma reesei is one of the most efficient and
productive fungi used to produce industrial grade cellulolytic
enzymes. The most common cellulase groups produced by T. reesei
that cleave the B— 1,4 glycosidic bonds are B-glucosidase, endo-
glucanases and exoglucanases [113]. However, cellulase enzymes
exposed to lignin and phenolic-derived lignin are subjected to
adverse effects [36,37,119] and have demonstrated that phenolic-
derived lignin have the most inhibitory effects on cellulases. This
study reported that a ratio of 4 mg to 1 mg peptides, reduced by
half the concentration of cellulases (i.e. B-glucosidases) from T.
reesei. This strain was also shown to be 10 to 10 fold more
sensitive to phenolics than Aspergillus niger. In addition to
phenolic components effect on cellulases, lignin has also an
adverse effect on cellulases. As mentioned previously, the lignin
adverse effect has two aspects including non-productive adsorp-
tion and the limitation of the accessibility of cellulose to cellulase.
Although considerable genetic modifications (GMs) have been
deployed to transform lignin effects, lignin has been shown to be
a potential source of self sustaining-energy and added-value
components. Consequently, several research studies have deter-
mined practical approaches in eliminating inhibition of cellulases
without involving GM approaches. Lui et al. [120] have demon-
strated that the application of metal components namely, Ca(Il)
and Mg(II) via lignin—metal complexation substantially enhanced



456

Table 3

A. Limayem, S.C. Ricke / Progress in Energy and Combustion Science 38 (2012) 449—467

Pretreatment methods and key characteristics.

Pretreatments

Key characteristics

References

Dilute acid (H,SO4, HCL (0.5—5%)

Hot water

Lime

Ammonia fiber expansion (AFEX)

Ammonia recycle percolation (ARP)

Steam explosion with catalyst

Organosolv

Sulfite pretreatment top overcome
recalcitrance (SPORL)

Ozone

Alkaline wet oxidation

Fungal bioconversion

Practical and simple technique. Does not require thermal energy.
Effective hydrolyze of hemicelluloses with high sugar yield.
Generates toxic inhibitors

Requires recovery steps

The majority of hemicelluloses can be dissolved.
No chemicals and toxic inhibitors.

Average solid load.

Not successful with softwood.

High total sugar yield including pentose and hexose sugars.
Effective against hardwood and agricultural residues.

High pressure and temperature hinder chemical operation.
Commercial scalability problem

Effective against agricultural residues mainly corn stover without
formation of toxic end-products.

Not suitable for high-lignin materials.

Ammonia recovery

No wastewaters

High redistribution of lignin (85%)
Recycling ammonia
Theoretical yield is attained

Effective against agricultural residues and hardwood.
High hemicelluloses fractions removal
Not really effective with softwood

High yield is enhanced by acid combination.
Effective against both hardwood and softwood.
Low hemicellulosic sugar concentration
Formation of toxic inhibitors

Organic solvent requires recycling

High capital investment

Effective against high-lignin materials, both softwood and hardwood.
Highest pretreatment energy efficiency

Minimum of inhibitors formation

Accommodate feedstocks versatility.

Steam explosion combined to SPORL in presence of catalyst becomes
effective against softwood materials

Cost-effective.

Effectively remove lignin from a wide range of cellulosic material
without generating inhibitors.
Expensive

The combination of oxygen, water, high temperature and alkali reduce
toxic inhibitors.

High delignification and solubilization of cellulosic material

Low hydrolysis of oligomers

Environmentally friendly
Low use of energy and chemical
Slow bioconversion

[79,93,103,105,106,194]

[46,92,94—-96,108,195,196]

[53,107,196]

[19,118,122,147,149,183]

[26,199,200]

[106,122,201—203]

[202,204]

[53,89,90,112,132,133,184]

[19]

[97,202]

[181,206]

enzymatic hydrolysis. Additionally, Erickson et al. [121] have
reported the importance of additives namely, surfactants and
bovine serum albumin (BSA) in blocking lignin interaction with
cellulases. Sewalt et al. [119] have reported that the adverse
effect of lignin on cellulases can be surmounted by ammoniation
and various N compounds. Moreover, the enzymatic treatment
can be accomplished simultaneously with the engineered
co-fermentation microbial process known as simultaneous
saccharification and fermentation (SSF) [31,122]. This process has
been of interest since the late 1970s for its effectiveness to
minimize cellulolytic product inhibition and subsequently
increase alcohol production [122]. Typically, separate hydrolysis
and fermentation (SHF) processes involve the inhibition of the
hydrolytic enzymes (cellulases) by saccharide products such as
glucose and cellobiose. Unlike SHF, the SSF process combines
hydrolysis and fermentation activities simultaneously and hence

keeps the concentration of saccharides too low to cause any
considerable cellulase inhibition [109].

4.3. Fermentation

Pretreatment and hydrolysis processes are designed to optimize
the fermentation process [80]. This natural, biological pathway
depending on the conditions and raw material used requires the
presence of microorganisms to ferment sugar into alcohol, lactic
acid or other end products [11,79]. Moreover, industrial yeasts such
as S. cerevisiae have been used in alcohol production mostly in the
brewery and wine industries for thousands of years. S. cerevisiae
has also been utilized for corn-based and sugar-based biofuel
industries as the primary fermentative strain. Once becoming
accessible for enzymatic or acidic hydrolysis, the pretreated
cellulosic slurry is subsequently converted into fermentable
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free sugars. The sugars are mixed with water to form a broth.
Typically, during batch fermentation S. cerevisiae ferments
hexose sugars, mainly glucose, into ethanol in a large tank via the
Embden—Meyerhof pathway under anaerobic conditions and
controlled temperature. Yeast-based fermentation is always
accompanied by formation of CO, by-products and supplemented
by nitrogen to enhance the reaction. This conventional strain is
optimal at a temperature of approximately 30°C and resists
a high osmotic pressure in addition to its tolerance to low pH
levels of 4.0 as well as inhibitory products [123]. S. cerevisiae can
generate a high yield of ethanol (12.0-17.0% w/v; 90% of the
theoretical) from hexose sugars [34,124].

Traditionally, separate hydrolysis and fermentation (SHF)
sequential steps are used in bioethanol production. However, there
is particular interest in targeting bioethanol production that can be
derived from lignocellulosic biomass materials where both hexose
and pentose sugars are available from the hemicellulose fraction.
Despite its broad tolerance to stressful bioethanol process condi-
tions, S. cerevisiae is not able to ferment sugars other than hexose.
Unfortunately, lignocellulosic material includes a large proportion
of hemicellulosic biomass that contains mainly pentose sugars such
as p-xylose [125]. Moreover, an optimal fermentative microor-
ganism should be tolerant to a high ethanol concentration and to
chemical inhibitors formed during pretreatment and hydrolysis
process. In response to this inability of S. cerevisiae to ferment
pentose sugars, extensive efforts have been employed to develop
genetically engineered microorganisms that are capable of fer-
menting pentose and hexose sugars simultaneously. An optimal
fermentative microorganism should be able to utilize both hexose
and pentose simultaneously with minimal toxic end-products
formation. Different techniques including SSF and consolidated
bioprocessing (CBP) have been developed to ensure the combina-
tion of hydrolysis (step 3) and fermentation (step 4) in one single
reactor and thus, reduce product inhibition and operation costs. In
addition to continuing downstream steps, CBP processing inte-
grates both fermentation and cellulase formation in one fermen-
tative/cellulolytic microorganism [75]. However, despite the
extensive range of prokaryotic and eukaryotic microorganisms that
have been shown to be able to produce ethanol from sugars, most
of them remain limited in terms of sugars co-fermentation, ethanol
yield and tolerance to chemical inhibitors, high temperature and
ethanol.

In an effort to summarize relevant advantages and major limi-
tations of microbial fermentative species, Table 4 compares
potential microorganisms for lignocellulosic-based biofuel
fermentation including bacteria, yeasts and fungi that could be
optimized and become potential avenues to enhance alcohol yield
and productivity in large-scale lignocellulosic-based ethanol
fermentation.

4.4. Separation/distillation

Bioethanol obtained from a fermentation conversion requires
further separation and purification of ethanol from water
through a distillation process. Fractional distillation is a process
implemented to separate ethanol from water based on their
different volatilities. This process consists simply of boiling the
ethanol—water mixture. Because the boiling point of water
(100°C) is higher than the ethanol-boiling point (78.3 °C),
ethanol will be converted to steam before water. Thus, water can
be separated via a condensation procedure and ethanol distillate
recaptured at a concentration of 95% [23]. Typically, most large-
scale industries and biorefineries use a continuous distillation
column system with multiple effects [126]. Liquid mixtures are
heated and allowed to flow continuously all along the column. At

the top of the column, volatiles are separated as a distillate and
residue is recovered at the bottom of the column.

5. Current issues and challenges of lignocellulosic bioethanol
production

5.1. Overcoming recalcitrance of lignocellulosic materials

Although lignocellulosic biomass is a potential feedstock for
biorefineries, its recalcitrant structure and complexity remain
a major economic and technical obstacle to lignocellulosic-based
biofuel production [127]. The resilience of lignocellulosic mate-
rials is due to their composition and physicochemical matrix. The
organization of vascular, epicuticular waxes as well as the amount
of sclerenchymatous and the complexity of matrix molecules,
contribute to the compactness and strength of the cellulosic
material [87].

Furthermore, lignocellulosic materials as discussed previously
are composed principally of three components namely, cellulose,
hemicellulose and lignin. Together the polysaccharides, cellulose
and hemicelluloses serve as initial substrates for subsequent
saccharification and fermentation. However, these components are
encapsulated via a tight covalent and hydrogen link to the lignin
seal [96]. These tight bonds not only give the cell wall its compact
structure but limit enzyme access to the surface area. Moreover,
cellulose, a polymer of glucose molecules linked via B (1—4)-
glycosidic bonds confers to cellulose a crystalline and compact
structure [66].

Hemicellulose, the amorphous part of the cell wall, is composed
of different hexoses and pentose sugars including xylose and
arabinose bonded through xylans (1 —4)-linkages. These varieties
of sugars polymers and linkages between molecules impose more
complexities to the cell wall and therefore the hydrolysis process
necessitates numerous cost-prohibitive enzymes to cleave poly-
saccharides entirely into fermentable sugar fragments. Addition-
ally, components including primarily xylo-oligosaccharides
produced from hemicelluloses hydrolysis have been shown to be
inhibitory to cellulase enzymes [128]. Although xylose causes
a higher level of inhibition to cellulase enzymes than xylan, soluble
xylo-oligomers are considered the most inhibitory to cellulase and
substantially influence enzymatic hydrolysis [129,130]. Hence, the
removal of these components in addition to organic acids and
phenolics is desired in an attempt to achieve an efficient cellulose
conversion via enzymatic hydrolysis [75]. Thus, a successful and
low-cost ethanol bioconversion is closely related to the efficiency of
the pretreatment step. Pretreatment which is mechanical and/ or
thermo-chemical, and/or a biological agent primarily involves
redistribution of lignin and improving cellulose accessibility to
enzymes by increasing the surface area that will be subjected to
further hydrolysis. An effective pretreatment also requires
a reduction of energy consumption with minimum toxic inhibitory
products formation [53,80]. However, in addition to these
complexities and differences between components within the
lignocellulosic material, lignocellulose composition from each type
of biomass varies depending on the origin and geographical loca-
tion. Not all types of lignocellulosic feedstocks require the same
pretreatment strategy. These heterogeneities have an important
impact on the choice of pretreatments and the downstream
processes [131]. Currently, the SPORL treatment is of interest for its
broad spectrum ability on acting in both softwood and strong
hardwood materials [115,132]. This pretreatment degrades high-
lignin forest material with a limited formation of hydrolysis
inhibitors [133]. Wang et al. (2009) [132] have demonstrated that
lignin redistribution and increased porosity and surface area were
achieved in only 30 min and was followed by 10 h of enzymatic
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Table 4
Advantages and drawbacks of potential organisms in lignocellulosic-based bioethanol fermentation.
Species Characteristics Advantages Drawbacks References
Saccharomyces Facultative - Naturally adapted to ethanol - Not able to ferment xylose and [69]
cerevisiae anaerobic yeast fermentation. arabinose sugars. [143]
- High alcohol yield (90%). - Not able to survive high temperature [207]
- High tolerance to ethanol (up to of enzyme hydrolysis. [80]
10% v/v) and chemical inhibitors. [123]
- Amenability to genetic modifications [208]
Candida shehatae Micro-aerophilic - Ferment xylose - Low tolerance to ethanol [69]
yeast - Low yield of ethanol. [209]
- Require micro-aerophilic conditions [94]
- Does not ferment xylose at low pH [210]
Zymomonas Ethanologenic - Ethanol yield surpasses S. cervesiae - Not able to ferment xylose sugars. [211]
mobilis Gram-negative (97% of the theoretical), - Low tolerance to inhibitors [212]
bacteria - High ethanol tolerance (up to 14% v/v) - Neutral pH range [69]
- High ethanol productivity
(five-fold more than S. cerevisiae
volumetric productivity)
- Amenability to genetic modification.
- Does not require additional oxygen
Pichia stiplis Facultative - Best performance xylose fermentation. - Intolerant to a high concentration of [69]
anaerobic yeast - Ethanol yield (82%). ethanol above 40 g/L [213]
- Able to ferment most of - Does not ferment xylose at low pH [209]
cellulosic-material sugars including - Sensitive to chemical inhibitors. [214]
glucose, galactose and cellobiose. - Requires micro-aerophilic conditions
- Possess cellulase enzymes favorable to reach peak performance
to SSF process. - Re-assimilates formed ethanol
Pachysolen Aerobic fungus - Ferment xylose - Low yield of ethanol. [209]
tannophilus - Require micro-aerophilic conditions [215]
- Does not ferment xylose at low pH
Esherichia coli Mesophilic - Ability to use both pentose and - Repression catabolism interfere to [80]
Gram-negative hexose sugars. co-fermentation [215]
bacteria. - Amenability for genetic modifications - Limited ethanol tolerance [33]
- Narrow pH and temperature growth
range
- Production of organic acids
- Genetic stability not proven yet
- Low tolerance to inhibitors and ethanol
Kluveromyces Thermophilc yeast - Able to grow at a high temperature - Excess of sugars affect its alcohol yield [153]
marxianus above 52 °C - Low ethanol tolerance [109]
- Suitable for SSF/CBP process - Fermentation of xylose is poor and [180]
- Reduces cooling cost leads mainly to the formation of xylitol
- Reduces contamination
- Ferments a broad spectrum of sugars.
- Amenability to genetic modifications
Thermophilic
bacteria:
Thermoanaerobacterium Extreme - Resistance to an extremely high - Low tolerance to ethanol [217]
saccharolyticum anaerobic temperature of 70 °C. [109,154,155]
Thermoanaerobacter bacteria - Suitable for SSCombF/CBP Processing [95]
ethanolicus - Ferment a variety of sugars
Clostridium - Display cellulolytic activity

thermocellum

- Amenability to genetic modification.

hydrolysis. A small amount of 4% sodium bisulfate was added to the
solution under pH level of 2.0—4.5 and at a temperature of 180 °C.
The entire conversion of cellulose to glucose sugar was accompa-
nied by generation of low concentrations of inhibitors (less than
20 mg/g).

5.2. Potential water availability challenges for the biofuel system

Although biofuel water use is an important component to
consider for the sustainability of biorefineries, limited information
is available worldwide and in the U.S. on water requirements for
the emerging agricultural practices and technologies that could
impact water supplies and quality [134]. While water availability

does not pose a serious constraint in several countries such as
Brazil, Canada, Russia and some African nations, other countries
including China, India, South Africa and Turkey are already
encountering scarce water issues before even considering esti-
mates of additional water consumption associated with biofuel
production [135]. In the U.S., water availability could become an
issue in the near future if appropriate and more effective agricul-
tural water sustainability practices are not implemented. To date,
U.S. lignocellulosic-based ethanol is only produced at a pilot scale
level and is not yet commercially available [134]. However, this
study also reported that energy corn-derived biofuel has
already achieved an exponential growth requiring an increasing
availability of water in the Great Plains and other arid regions of
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the country. Moreover, biofuel water availability is a very com-
plex issue because it varies by regions and type of crops [136]. With
the increasing awareness toward the adverse effects of biofuel
system on the quality and availability of water, there has been
a series of investigations led by the U.S. National Academy of
Science (NAS) to determine current agricultural practices and
their impact on water resources and quality [136]. NAS has reported
that the most important factors that cause substantial water
stress due to biofuel production is the expansion of energy crops
such as corn in those areas of the U.S. Midwest that are already
susceptible to drought and hence require intensive irrigation.
Although biofuel processing utilizes a significant level of water, it
does not consume as much water as biofuel crops. Furthermore,
biofuel crops involve a substantial use of pesticides and herbicides
in addition to fertilizers resulting in a surplus of nutrients
including, nitrogen and phosphorus. This excess of nutrients used
for corn and other energy crops was demonstrated to lead to an
expansion of the “dead zone” in the Gulf of Mexico caused by
oxygen depletion [137]. NAS envisions a solution that places the
emphasis on increasing irrigation-efficiency used by farmers as
well as plant water recycling. However, Huffaker [138] suggests
that efforts should be directed toward improving water quality
impact rather than water recycling and irrigation efficiency. While
further expansion of cellulosic feedstock sources would be an
attractive alternative within the next decade to mitigate water
supplies and reduce fertilizer use geared toward intensive crop
cultivation, a shortage of water resulting from inefficient water
utilization during biofuel processing could also jeopardize biofuel
water sustainability [134].

6. Current prospects for systems approaches to biomass
conversion

Current research is continuing to deploy individual and specific
efforts toward achieving optimal solutions via improving
lignocellulosic-based ethanol performance with a minimum capital
investment on energy consumption and water supplies. Future
prospects for the optimization of lignocellulosic bioconversion
must embrace a more systematic enhancement of bioethanol for
all four major steps in bioethanol production. Pretreatment as
a first step is the most costly operation and accounts for approxi-
mately 33% of the total cost [139] with respect to the economic
feasibility of each step as well as the consideration of microbial
and chemical contaminations that can potentially reduce yields.
Developing genetically modified fermentative and cellulolytic
microorganisms enhanced by co-culture systems is desirable to
increase ethanol yield and productivity under the stressful condi-
tions associated with high production bioethanol-processes [140].
SSF as well as simultaneous saccharification and combined
fermentation (SSCombF) of the enzymatic hydrolyzate, glucose
with the hemicelluloses-derived sugars [120] and CBP are also
considered to be cost-effective and offer promise in reducing
end-product inhibition and operation numbers [122,141]. However,
an overall analysis of performance would provide a clear vision of
the system conditions and allow implementation of feasible
preventive interventions aimed at enhancing biofuel production
efficiency.

6.1. Overall analysis of performance: life cycle assessment (LCA)
comparisons

As technologies emerge that improve various stages of biofuel
production from biological sources, there is increasing need to
compare overall performance with current operational systems to
verify their validity in terms of water use and energy performance

on biofuel systems as well as the environmental impact. LCA
methodologies are considered to be the analysis model of choice for
quantitatively comparing the environmental impacts of each
biomass-based energy generating system. This approach primarily
focuses on the estimation of direct impacts along with indirect and
co-products credits including the carbon cycle as well as gas
emission, fossil fuel consumption, water consumption and gener-
ation of wastes involving energy utilization.

Recent studies conducted by Mu et al. [81] have analyzed and
compared biochemical and thermochemical conversion pathways
based on LCA studies. They concluded that despite the equivalent
alcohol productivity and energy efficiency performance between
the two routes, in the short run biochemical conversion is consid-
ered to have a more favorable environmental performance than the
thermochemical route. LCA approaches rely on quantitative esti-
mations of direct (chemical pollutant agents) and indirect (green-
house gas emissions (GHG), fossil fuel intake, water consumption)
impacts along with biomass contribution and co-product credits
(electricity, mixed alcohol and heat). Assessments performed by
legislators on the validity of the biomass-based energy, stipulated
that a satisfactory alternative to petroleum gasoline should achieve
at least 20% reduction in GHG. Biochemical conversion of cellulosic
materials was able to achieve 50% reduction of GHG emission
compared to a non-renewable fuel. The biochemical route also
saved consumption of fossil fuel resources (1.13 MJ/L) but generated
chemical releases including phosphorus and nitrogen to the
atmosphere causing additional eutrophication and acidification.
While the biochemical route exhibited higher water consumption
than the thermochemical process, it did yield a better short-term
environmental performance on parameters such as GHG emis-
sions and fossil fuel consumption. This in turn leads to a lower
impact on the environment as it uses components such as lime,
sulfuric acid and nutrients that can considerably influence LCA
estimates of fossil oil, water consumption and greenhouse gas
emission. Much more detailed LCA comparisons between thermo-
chemical and biochemical operations have been discussed else-
where [81].

6.2. Optimization of the biofuel process main steps

To date, various approaches have been advanced to improve the
four-steps of the bioethanol process. Pretreatment is considered
the most costly operation and a major constraint toward achieving
high-yield via low-cost capital [93]. Therefore, an initial step for
improvement is crucial to the success of downstream operations.
There has been considerable advancement in pretreatment tech-
nology and several approaches are already available and successful
depending on the characteristics of the respective lignocellulose
biomass source. Feedstocks richer in lignin exhibit a high recalci-
trance and resistance, thus requiring different treatment
approaches from raw materials that have a higher quantity of
amorphous hemicelluloses rich in pentose sugars [142]. Hence, the
inevitable feedstock versatility and variability has become
a potential issue for bioethanol investors. Given that ethanol is
a commodity product, bioethanol plants would have limited
choices for available feedstock. This key issue has led researchers to
look for a pretreatment process able to deal with a variety of raw
materials [53]. Moreover, the appropriate treatment is also corre-
lated to the manufacturing economics as well as lay-out and
possible investments. The selection of a suitable pretreatment
relies primarily on environmental, economical and technological
factors including energy savings, wastewater, recycling issues,
substrate recovery along with a maximal solid loading yield and
minimal use of chemicals [143].
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Traditionally, dilute acidic pretreatment is the most commonly
used method in the bioethanol process. This upstream treatment is
considered to be the most practical due to its effectiveness at a low-
cost [102,144]. However, the formation of high levels of toxic
inhibitors namely, acetic acid, HMF and phenolic components
requiring an additional detoxification step have led researchers to
focus on better alternatives. Phenolic components particularly
phenolic hydroxyl groups can influence cellulase enzyme activities
[53]. Consequently, it is important to remove phenolics if enzymatic
hydrolysis is to be improved. Furthermore, according to Ladisch
et al. [75], since toxic inhibitors such as aldehyde components
considerably influence microbial growth rate and volumetric
productivity, selecting a fermentative culture from metabolically
modified microorganisms would improve microbial resistance to
inhibitors.

Steam explosion in the presence of catalyst has gained consid-
erable interest and researchers are examining the potentially high
correlation between catalyst concentration and ethanol yield. Of
the numerous techniques tested, Ohgren et al. [145] confirmed the
effectiveness of catalyzed steam-explosion by 3% (w/w) sulfur
dioxide (SO;) pretreatment accompanied by a cellulase and xyla-
nase hydrolysis step at 45 °C during 72 h. These operations yielded
approximately 96% glucose and 86% xylose from residue corn
stover feedstocks. The Consortium for Applied Fundamentals and
Innovation [145] have also demonstrated the efficiency of SO,
steam explosion against poplar hardwoods (P. deltoids) as it
produced an 86.2% xylose yield with a final ethanol concentration
of 25.9 g/L. Although SO, could be toxic to the environment and
sulfur alone could pose potential harmful effects to some cellulo-
lytic enzymes and distillation, a SO, catalyst has been demon-
strated to increase enzymes accessibility to the biomass owing to
a more complete and rapid hemicellulose release [145,146]. Addi-
tionally, information is still lacking to confirm residual SO, side
effects once ethanol is used in motor vehicles. Moreover, Hu et al.
(2008) [46] reported that the acetic or uronic acid associated to
autocatalysis effects from wood pretreatment could be a better
alternative to sulfuric acid or SO, catalysts. According to this study,
despite optimal cellulases pH levels of 4.5—5, an impregnation of
the biomass at room temperature with an appropriate dosage of
acetic acid of 1 mM corresponding to a pH level of 3.9 is feasible.
This acid impregnation followed by a pretreatment temperature at
200 °C for 10 min would not require substantial toxic compound
removal or adverse effects to cellulolytic enzymes. Thus, acetic acid
could be a potential alternative to dissociate the biomass. However,
further investigations need to be performed to validate these
assumptions.

AFEX has also been developed as another emerging economical
pretreatment that limits inhibitor formation for agricultural resi-
dues such as corn stover [19,147,148]. Moreover, extensive research
continues to improve steam explosion with catalyst effectiveness
against recalcitrant softwood materials. Zhu et al. [112] developed
a potential pretreatment SPORL to overcome the high recalcitrance
of woody biomass such as softwood material. This approach
produced readily hydrolyzed sugars and achieved excellent
recovery of the hemicelluloses with minimal generation of inhibi-
tors. Interestingly, 87.9% of the hexose and pentose sugars were
recovered with the SPORL method when compared with overall
saccharides recovered from dilute acid (56.7%) [133]. The short
pretreatment time period associated with this approach permitted
a low liquid-to-wood-ratio leading to a greater pretreatment
energy efficiency [53]. Moreover, SPORL appears to be comple-
mentary to steam-explosion when using a catalyst and thus
improves its effectiveness against softwood biomass [133].

Different strategies including SHF, SSF as well as SSCombF have
been extensively evaluated and subsequently implemented to

initiate hydrolysis of released sugar polymers. There is some
evidence that while these treatments have advantages there are
disadvantages as well. Since optimal enzymatic hydrolysis is initi-
ated at approximately 50 °C while an optimal fermentation is
enhanced at 35°C, the SHF operation appears to be more cost
effective than SSF [148]. However, the SSF pathway has the
advantage of saving one step-costs in addition to its potential to
prevent cellulase inhibition by end-products such as glucose and
cellobiose. From another perspective, SSCombF improves the SSF
technique by adding the co-fermentation process as it allows
saccharification along with simultaneous sugar co-fermentations in
a single reactor.

6.3. Cellulolytic/fermentative microbial ecology — identification
of indigenous candidates

Although extensive research has been devoted to
lignocellulosic-based biofuel conversion [147], less information has
been provided on the microbial ecology and natural occurrence of
viable microflora in cellulosic biomaterial as well as its derived
residues. Typically, an in-depth knowledge and understanding of
the ecology of the indigenous candidates could yield potential
microorganisms useful for microbially-based fermentation and
cellulolytic hydrolysis in biofuel production. However, most
research efforts have focused on forestry and agricultural soil
microbial characteristics reflecting microbial diversity associated
with these ecosystems, since there is a mutual and close relation-
ship between the soil-microflora and plant roots [150]. Cellulosic-
containing soil consists of a wide range of microorganisms
including bacteria, filamentous fungi and wild yeasts. Synergism
among these microorganisms is fundamental to the ecological
balance constituting the biomass ecosystem [151]. The nature of
microorganisms as well as the frequency and abundance vary
depending on the ecological factors such as geographical location,
climate, soil and viable forms. Bacterial populations in normal
fertile agricultural soil can reach 10—100 million colony-forming
units (CFU)/g [150]. Yeasts in soil can range from a few to greater
than a 1000 cells per gram. In southwestern Slovakia, 111 yeast
strains were isolated from 60 different agricultural soil samples.
Among the wide range of collected strains 4 genera namely, Cryp-
tococcus, Candida, Metschnikowia and Sporobolomyces were
considered to be the most predominant [151]. This study revealed
that the number of yeasts collected from agricultural soil was ten
times lower than yeasts isolated from forest soil since less fungicide
and tillage were used in the nearby forest.

Of the numerous microorganisms collected from biomass
ecosystems, only a few strains have proven to be of interest for their
ethanologenic or cellulolytic abilities in bioethanol bioconversion.
In northeastern Brazil, genera such as Candida, Pichia and Dekkera
were isolated from sugarcane molasses. Despite their overall
fermentative ability, these genera yielded low ethanol concentra-
tions in comparison to S. cerevisiae and produced acetic acid
which was inhibitory to the fermentative yeast [152]. However,
some natural ethanologenic yeast species such as Pichia stipilis,
Pachysolen tannophilius, Kluyveromyces marxianus and Candida
shehatate appeared to have promise in replacing S. cerevisiae in
lignocellulosic-based ethanol fermentation [140]. Nevertheless,
these wild yeasts still require further development to survive bio-
ethanol fermentation conditions and yield an optimal ethanol
concentration. The competitive exclusion as well as repression
catabolism (competitive inhibition of hexose and pentose sugar
transport) among these microorganisms in the bioethanolic
ecosystem render addition of a selective agent to not be of partic-
ular value for improving yield performance [131]. However, selec-
tive temperatures with thermophilic yeasts including K. marxianus
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or bacteria such as Clostridium cellulolyticum and Thermoanaer-
obacterium saccharolyticum may serve as alternatives if these
microorganisms are used as the major fermentative and cellulolytic
agents at high temperature operations (approximately 50 °C)
[153—156]. Furthermore, indigenous groups of mesophilic and
thermophilic-ethanologenic bacteria such as Zymomonas mobilis
and Bacillus stearothermophilus have proven to be promising
candidates to convert sugars into ethanol [140]; however, they
remain deficient as optimal ethanol producers in comparison with
S. cerevisiae in terms of resistance to high alcohol concentration and
chemical inhibitors.

While a selection of indigenous bacteria and yeasts that possess
fermentative abilities is possible, fungi isolated from agricultural
residues and forest woods also possess attractive lignocellulolytic
properties for initiation of the pretreatment step. In 1976, almost
14,000 cellulolytic fungi were collected from plant cell walls [157].
Only a few fungal isolates were selected for additional research and
further categorized into three groups, namely white-, soft- and
brown-rot fungi. Brown-rot fungi primarily hydrolyze the cellulose
polymer, while white- and soft-rot fungi are able to degrade most
of the lignin, hemicellulose and cellulose. White rot fungi such as
Basidomycetes (e.g. Phanerochaete chrysosporium RP78) are indige-
nous to the northern part of the world. P. chrysosporium is consid-
ered among the most attractive alternative fungi for biomass
processing due to their physico-chemical abilities to non-selec-
tively break down lignin recalcitrant material from the cell wall
while liberating cellulose and hemicellulose. These fungi are
thermo-tolerant and can survive a temperature of 40 °C [158].
Chrysosporium is also known as a wood-decaying fungus for its
unique oxidative system and has been shown to be effective on the
pre-treatment of cotton stalks [159]. Phlebia radiata, as well as
Phlebia floridensis and Daedalea flavida belong to Basidomycetes
species and are capable of selectively degrading lignin in wheat
straws and cellulosic residues [160]. Trichoderma viride, Tricho-
derma emersoni along with T. reesei (Ascomyctes) and A. niger are
also attractive for their cellulolytic properties, tolerance to low pH
and high temperature in addition to their ability to release large-
scale cellulase enzymes [158]. T. viride grows rapidly at a wide pH
range of 2.5—5.0 reducing potential contamination from other
microorganisms [129,162].

Mushrooms including Volvariella species also possess hydrolytic
capabilities. They have been isolated mostly from rice straws in
Asian or African countries. Lentinus edodes has also been used in
Japan and China to digest lignified residues. Aside from their ability
to degrade lignocellulosic biomaterial, some white-rot fungi
belonging to the genus Pleurotus are able to convert waste into
protein for human and animal consumption [163,164].

Clostridium thermocellum, an anaerobic thermophilic microor-
ganism, is among the rare bacteria that possess cellulolytic prop-
erties in addition to its ability to ferment sugar polymers into
ethanol [162]. Several physiological attributes make this microor-
ganism a promising candidate. It has a selective growth tempera-
ture of 50 °C during the fermentation process and can convert
cellulose polymer directly into ethanol yielding 0.3 g/g ethanol
per converted cellulose at a high temperature of approximately
60 °C [165,166]. C. thermocellum has been considered among the
more promising thermophilic microorganisms suitable for SSF
and CBP [141].

6.4. Fermentation optimization — potential genetically modified
organisms (GMO)

Advances in genetic engineering have been made to alter the
conventional yeast, S. cerevisiae’s capability to ferment glucose and
pentose sugars simultaneously [167,168]. A S. cerevisiae TMB3400

modified stain, designed on the basis of expressing the same gene
for P. stipilis xylose reductase (Ps-XR) is not only capable of co-
fermenting saccharides but can also generate less HMF products
(3 times less than the initial industrial strain) [169]. As mentioned
previously, CBP is also a promising approach in combining both
hydrolysis and fermentation operations in one single vessel.
Additionally, CBP bioprocessing enables genetically-modified
microorganisms that are able to produce cellulase enzyme to
ferment sugars in one step and thus prevent further investment in
costly cellulolytic enzymes [141]. Furthermore, Ladisch et al. [75]
have reported that CBP could be combined with the pretreatment
operation to generate lignin that could be used as a boiler fuel and
provide sufficient energy to run the process (see Fig. 1).

However, fermentative microorganisms must be thermo-
tolerant to survive the high temperatures of SSF/SSCombF/CBP
processes. These processes can also be accompanied by a biological
treatment step that utilizes cellulolytic fungi which require high
temperature and low pH. Furthermore, Kumar et al. [109] suggested
examining thermophilic anaerobic bacteria and yeasts such as T.
saccharolyticum, Thermoanaerobacter ethanolicus, C. thermocellum
and K. marxianus IMB3 for their potential to utilize a wide range of
feedstocks at high temperatures above 65 °C. These thermophilic
bacteria are able to ferment both hexose and pentose sugars in
addition to their ability to produce cellulase enzymes and avoid the
addition of commercial enzymes. Kumar et al. [109] have also
reported that Thermoanaerobacter BG1L1 had the potential to
ferment corn stove feedstocks at 70 °C within an undetoxified
biomass in a continuous reactor system. This thermophilic
fermentation yielded 0.39—0.42 g/g (ethanol per sugar consumed)
and nearly 89—98% xylose was utilized despite the low tolerance to
ethanol reported by Claassen et al. [124]. Ethanol fermentation at
high temperature continues to be an emerging technology as it
allows selection for microorganisms by temperature and does not
require cooling costs and cellulase addition [170]. Recently, the
thermo-tolerant yeast, K. marxianus has been documented as an
attractive candidate due to its ability to co-ferment both hexose and
pentose sugars and survive high incubation temperatures of
42—45 °C[171]. Moreover, K. marxianus was genetically modified to
exhibit T. reesei and Aspergillus aculeatus cellulolytic activities
allowing direct conversion of cellulosic pf-glucan into ethanol at
48 °C under continuous conditions, yielding 0.47 g/g ethanol; 92.2%
from the theoretical yield and making it an ideal GMO for CBP
processing [171].

The industrial potential for S. cerevisiae fermentation has
already been proven for first generation large-scale bioethanol
production. The genetic improvement of the conventional
fermentative strain is gaining increasing research interest since this
strain is already the most optimally adapted to bioethanol
fermentation conditions. To date, CBP for biofuel fermentation
using genetically modified S. cerevisiae is an emerging technology
that has been developed in several studies [172—174]. These studies
demonstrate that in addition to its co-fermentative genetic flexi-
bility, S. cerevisiae can also be genetically engineered to express
cellulolytic and hemicelluloytic heterologous enzymes. van Zyl
etal. [173] demonstrated this type of modification of S. cerevisiae by
reassembling all existing components of a minicellulosome on its
membrane surface from the thermophilic microorganism C. cellu-
lolyticum via heterologous expression of a chimeric protein scaffold
under phosphoglycerate kinase 1 (PGK 1) regulation. The successful
functionality of cohesin and dockerin from C. cellulolyticum cellu-
losomein S. cerevisiae proved that this genetic modification based
on a minicellulosome model may be an attractive option to the CBP
process in hydrolyzing and fermenting substrates in a single step.
Unlike T. reesei, recombinant S. cerevisiae is not able to simulta-
neously control cellulolytic enzyme expression to effectively
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hydrolyze cellulose. Yamada et al. [175] reported the effectiveness
of a cocktail 3-integration approach that consists of the insertion of
a high cellulase activities based cassette into the yeast chromosome
to optimize its cellulase expression ratio.

Z. mobilis is also among the more attractive ethalonogenic
bacteria candidates due to its high ethanol yield production and
resistance to temperatures in the range of 40 °C (2.5 fold higher
than S. cerevisiae) [176]. Numerous genes have been introduced and
heterologous expression has been incorporated into Z. mobilis to
extend its effectiveness toward other substrates namely, xylose and
arabinose since this strain is only able to ferment glucose [177].
Furthermore, the insertion of B-glucosidase gene into Z. mobilis to
also convert cellobiose can be used in the SSF process [176,178,179].
Currently, commercial companies (DuPont Danisco Cellulosic
Ethanol (DDCE) and Butalco) have assayed genetically engineered
Z. mobilis and S. cerevisiae potential for their high ethanol yield
performance and adaptability [180].

Enhancing large-scale low-cost ethanol bioprocessing by bio-
logical pretreatment involving fungi (e.g. T. reesei and a Basidio-
myctes) that exhibit lignocellulolytic properties at low pH levels
and high temperatures is also a promising added-value treatment
to SSF ethanol bioconversion. While fungi bioconversion activities
have been demonstrated to be slow, optimization of potential
lignocellulolytic fungi has been demonstrated possible via muta-
genesis, heterologous gene expression and co-culturing [181].

Although some of the emerging strategies and methods have
proven to be promising under different circumstances, some of
these technologies remain biomaterial-type and cost dependent.
For example, Talebnia et al. [143] have concluded that the most
suitable pretreatment for wheat straw material was steam explo-
sion since it required a shorter reaction time, lower chemicals and
high solid solubilization. However, this study also demonstrated
that steam explosion operation exhibited a high level of influence
on the downstream operations and its success depended on the
framework of the entire process. Thus far, Binod et al. [182]
hypothesized that an environmentally friendly biological conver-
sion approach using thermo-tolerant stains such as Clostridium
phytofermentums and Basidomycetes in SSF/CBP processings would
be the future method of choice for rice straw feedstock if slow
bioconversion is to be overcome.

Furthermore, Lau and Dale [183] have demonstrated the effec-
tiveness of AFEX against corn stover feedstock via SSF process,
using the 424 A (LN-ST) strain of S. cerevisiae, designed by Ho et al.
[168]. This pretreatment achieved an ethanol concentration of
40.0 g/L (5.1 vol/vol%) without adding nutrients or requiring
washing and detoxification steps. The Consortium for Applied and
Innovation [173] team selected by the Department of Energy (DOE)
office of the Biomass program has demonstrated a higher recalci-
trance of poplar wood in comparison with corn stover. Optimal
performance was achieved by a more severe treatment involving
mainly SO, steam explosion or lime associated with the co-
fermenting yeast strain 424 A (LN-ST) of S. cerevisiae. However,
a large portion of these studies focused more on sugar yield with
minimal attention given to mass balance and energy estimates
crucial for a complete evaluation of pretreatment efficiency. Zhu
and Pan [53] conducted an in depth study on the impact of the
energy consumption from woody feedstock on estimating the
effectiveness of potential pretreatments. They established the
benchmark based primarily on the energy consumption for
comparing the performance of the more attractive lignocellulosic
biomass pretreatments including, SPORL, organosolv and steam
explosion with catalyst. They demonstrated that SPORL pretreat-
ment overall was the most advantageous and commercially scal-
able to sugar recovery along with total energy consumption
(physical and thermo-chemical) in addition to the returned lignin

co-product potential from softwood. Zhu et al. [89] confirmed the
effectiveness of SPORL pretreatment prior to a disc-milling opera-
tion on Lodgepole pine softwood in terms of pretreatment energy
efficiency of 0.26 kg of sugar/M], an ethanol yield of 276 L/ton
softwood (using thermo-tolerant, S. cerevisiae D5A), and an energy
output of 4.55 GJ/ton wood correlated to the mass balance. Recent
studies published by Tian et al. [184] identified the benefits from
SPORL technique over dilute acid (DA) pretreatment used for the
least resistant woody biomass, aspen (Populus tremuloides). This
study revealed that SPORL pretreatment exhibited a higher
substrate enzymatic digestibility (SED) than DA and was favorable
to the high ethanol yield SSF process. Tian et al. [184] also
concluded that SPORL pretreatment with 10% higher sugar and
bioethanol yield as well as a higher ethanol and sugar production
energy efficiency 395 kg/G]J over 339 kg/GJ for DA, remained one of
the most attractive alternatives for low and high recalcitrant woody
material. Olofsson et al. [131] used raw spruce material to
demonstrate the importance of adopting a controlled feeding of
cellulase enzymes to prevent the competitive inhibition of sugars
transport (glucose over xylose). This study demonstrated that
controlled-cellulase addition increased the total xylose uptake from
40 to 80%. Overall, sustained efforts are still required to improve
bioconversion technology toward reaching the best performance
possible to deal with lignocellulosic feedstock variability.

Improvement in each of these prospects represents individual
steps toward implementing successful cost-effective lignocellu-
losic-based bioethanol operations. However, to accomplish
substantial improvement will require more of a comprehensive
systems approach that simultaneously accounts for all inputs and
outputs during the entire operation regardless of changes in any of
these individual steps.

6.5. Microbial risk assessment (MRA) modeling

6.5.1. Concepts

The use of GMOs presents another challenge to the bioethanol
industry. Introduction of such organisms into large-scale fermen-
tation operations opens up the possibility of environmental
dissemination and potential exposure risks to public health. Like-
wise, industrial operations using antibiotics to control microbial
contaminants in industrial scale fermenters or as strain markers
would generate and release antibiotic resistant organisms and offer
another potential environmental public health risk [35,185]. MRA is
a comprehensive approach that can provide guidance for reducing
potential microbial public health exposure by estimating the risk of
microbial dissemination over all steps in a microbial-based process
such as bioethanol formation. MRA is an emerging systematic and
science-based method generally used to provide a qualitative and
quantitative evaluation of the probability of occurrence of adverse
health effects originating from microbial hazard contamination in
food products [186]. It is based on four major steps namely, hazard
identification, hazard characterization (response—dose assess-
ment) followed by exposure assessment and risk characterization
[186]. Currently MRA is the primary science-based tool of Codex
Alimentarius on which the World Trade Organization (WTO) uses
to describe food safety and risk estimation of food products [187].

6.5.2. Application of risk assessment in large-scale fermentation
systems

Applications using MRA to certify the safety and equivalence of
food products in today’s global market are still early in develop-
ment. For biofermenters, MRA would be a useful tool in assessing
the exposure risk of using antibiotics to control large-scale micro-
bial contamination by evaluating major steps from the plant source
to the distillation final process for potential generation and
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Fig. 3. Hypothetical MRA Model of Biofuel Source-to-distillation System (FAO, 2005) [190]. GMOs: Genetically modified organisms; CTs: Contaminants including antibiotic

resistance organisms.

dissemination of antibiotic resistant organisms [188]. Fig. 3 illus-
trates a hypothetical model system of MRA for biomass processing
based on the methodology adopted by Food and Agriculture
Organization [189] of the United Nations. In this representation,
the MRA concept was applied to the lignocellulosic-based
biofuel operation from harvest-to-distillation in an attempt to
design a model describing transparently dynamic microbial
contamination. Detecting microbial problems at an early stage and

suppressing microbial dissemination via selective cost-effective
control measures that does not cause damage to the ecosystem is
of primary concern [185].

Rapid development of agricultural biotechnology in the early
1980s has led to the emergence of GMOs. Therefore, it has
increased public concern on their potential hazards including
pathogenic microbial mutations and the long-term proliferation of
harmful genes in the environment that could have a serious
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consequence on public health and the respective environments
[190]. The awareness of the possible impact that could originate
from large scale GMO applications has encouraged work primarily
from the Toxic Substances Control Act (TSCA) on a pragmatic
science-based methods such as MRA combined to biotechnology
risk assessment (BRA) to predict the probability of occurrence of
adverse outcomes in the environment from large scale GMOs
based applications[191]. Thus, greater control could be performed
to improve public health and ensure comprehensive environ-
mental safety.

7. Conclusions — future prospects

Cellulosic-based biofuel is a potential alternative over food-
derived bioethanol originating mainly from cornstarch and
sugarcane provided by the world’s large producers U.S. and Brazil,
respectively. Pretreatment, the most costly step is of particular
concern due to the high recalcitrance of lignocellulosic raw
materials. Given that lignocellulosic feedstock is a versatile
material and bioethanol is a commodity product, it has been
deemed imperative to design a general pretreatment combination
that would be effective against a wide range of cellulosic material
and hence deal with feedstock variability. For instance, researchers
have shown that pretreatments involving steam explosion with
either catalyst or lime are potential candidates to agricultural
residues, herbaceous materials and hardwoods. The inability of
steam explosion combined with catalyst to degrade softwood
materials can be compensated by the low-cost and the energy
efficient SPORL pretreatment approach. Emerging technologies
including SSCombF and CBP represent potential improvements as
they reduce operation steps as well as chemical inhibitors and can
be enhanced by lignin, energy-self-sustaining co-products. These
processes are typically associated with thermophilic and cellulo-
lytic microorganisms including organsisms such as T. reesei along
with P. chrysosporium, K. marxianus and C. cellulolyticum with
some of them possessing fermentative abilities in addition to their
hydrolytic properties. However, some companies such as DDCE
(DuPont Danisco Cellulosic Ethanol) and Butalco prefer using
genetically engineered conventional strains, S. cerevisiae and
ethanologenic Z. mobilis for their higher alcohol tolerance and
yield.

In conjunction to rapid molecular biology techniques, mathe-
matical modeling including MRA and biotechnology risk assess-
ment (BRA) can be used to ensure greater predictability for limiting
antibiotic resistant microflora and GMO dissemination during
operation. While technological accomplishments and multiple
research coalition efforts are still progressing, an efficient combi-
nation of the most advanced systems analysis and economical
techniques designed to cope with feedstock versatility and
commodity should emerge as the option of choice in an attempt to
achieve optimal second-generation biofuel performance.
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