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Intercellular transport via plasmodesmata controls cell fate

decisions in plants, and is of fundamental importance in

viral movement, disease resistance, and the spread of RNAi

signals. Although plasmodesmata appear to be unique to plant

cells, they may have structural and functional similarities to the

newly discovered tunneling nanotubes that connect animal

cells. Recently, proteins that localize to plasmodesmata have

been identified, and a microtubule-associated protein was

found to negatively regulate the trafficking of viral movement

proteins. Other advances have delivered new insights into the

function and molecular nature of plasmodesmata and have

shown that protein trafficking through plasmodesmata is

developmentally regulated, opening up the possibility that the

genetic control of plasmodesmal function will soon be

understood.
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Introduction
Plant cells are connected by cytoplasmic channels called

plasmodesmata (PDs) that allow the transfer of nutrients

and signals necessary for growth and development. PDs

transverse the cell walls of neighboring cells, and inside the

plasma membrane sleeve a proteinaceous rod called the
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desmotubule [1,2] (Figure 1) connects the endoplasmic

reticulum (ER) of adjacent cells. The desmotubule may

provide the surrounding plasma membrane with stability

[1] and may also be important in regulating permeability.

Molecules are thought to traffic through the cytoplasmic

channels between the desmotubule and the plasma mem-

brane, either by a non-targeted or passive mechanism, if

they are under the size exclusion limit (SEL) of the

channel [3], or by a selective and regulated mechanism,

if they possess an intrinsic trafficking signal(s) [4]. Other

possible mechanisms are also discussed below. The SEL

is developmentally regulated and decreases during devel-

opment. This change is correlated with a change in

PD morphology from simple channels to branched PD

structures [5].

Plant development is reliant on intercellular communica-

tion through PDs. The first endogenous protein found to

traffic cell-to-cell through PDs was the maize develop-

mental homeodomain protein KNOTTED1 (KN1) [6,7].

Soon after, phloem proteins [8] were found to increase the

PD SEL and to traffic cell-to-cell. The functional sig-

nificance of the numerous phloem mobile proteins is still

being elucidated. More recently, other developmental

transcription factors such as DEFICIENS [9], SHORT-

ROOT (SHR) [10], LEAFY (LFY) [11] and CAPRICE

(CPC) [12] were also found to traffic and in some cases to

mediate cell-fate decisions in destination cells.

Plant viruses also take advantage of PDs to spread their

genomes from cell to cell. Movement proteins (MPs) are

specialized viral proteins that increase the SEL [13,14]

and permit viral genome transport [15,16,17]. MPs asso-

ciate with both the cytoskeleton [18,19] and the ER

[20,21,22]. The discovery of endogenous plant factors

involved in MP function promises to greatly enhance

our understanding of these elusive molecules [23��].

In this review, we will discuss recent advances in our

understanding of the mechanisms of transport through

PDs, how viruses use the PD machinery to traffic cell-to-

cell, and the discovery of intriguing molecular players in

PD function. We will also discuss recent choice experi-

ments that demonstrate the considerable role of PDs in

plant development.

Mechanisms of transport through
plasmodesmata
Passive transport

PDs permit the passive transport of macromolecules if

they are freely available in the cytoplasm and if their size
www.sciencedirect.com
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is below the SEL. Experiments involving either loading

or microinjection of fluorescent probes indicated that

these small dyes (�1 kDa) could move by diffusion

(reviewed in [24]). In some cases, the SEL can be much

larger than 1 kDa; for example the green fluorescent

protein (GFP) can traffic freely in tissues such as petals,

root tips and young rosette leaves [25]. Although passive

transport through PDs is likely to be a result of diffusion,

it may be selective, as is the case with animal gap

junctions [26].

Active transport

The movement of viral MPs and endogenous proteins

such as KN1 probably occurs via targeted mechanisms

(reviewed in [27]). The hypothetical mechanisms of

active, targeted movement through PDs are still under

investigation. They include a PD-receptor-mediated

mechanism where the non-cell-autonomous protein

(any protein that traffics cell-to-cell through PDs) itself

has a PD targeting signal, and a classical exo- and endo-

cytosis mechanism [27]. We propose a novel hypothesis

for transport through PDs by analogy to a novel mode of

cell-to-cell transport that has recently been discovered in

animals (to be discussed later in this section). These

hypothetical mechanisms are distinct, but probably not

mutually exclusive.

Exo-endocytosis

Baluska et al. [28] used fluorescent dye labeling to show

that fluid phase endocytosis occurs in the PDs of maize

root apices. Tubulo-vesicular compartments invaginated

from the plasma membrane at acto-myosin-enriched pit-

fields and at individual PDs. The formation of these

compartments was blocked by latrunculin B, suggesting

an actin-dependent mechanism, whereas microtubule

disruption had no effect. The presence of endocytic

vesicles at PDs suggests that PDs play a role in endo-

membrane trafficking or vesicle internalization, possibly

at the site of vesicle docking, and in membrane fusion.

The cell wall (ECM) is much thinner at sites where PDs

are clustered, which may therefore coincidentally be good

sites for exo- and endocytosis. If coupled with exocytosis,

such a mechanism could result in protein translocation

between plant cells, similar to a proposed mechanism for

ENGRAILED homeodomain transport between animal

cells [29].

Tunneling nanotubes

The discovery of a novel type of intercellular channel in

animal cells [30��], called a ‘tunneling nanotube’ (TNT),

may provide the first evidence that functionally similar

modes of intercellular communication exist in plants and

animals. TNTs were discovered during the imaging of

fluorescently labeled lectin dyes in cultured rat cells

[30��]. Independently of classical endo- and exocytosis,

TNTs permit trafficking of endomembrane vesicles

between cells, as shown by the presence of synaptophy-
www.sciencedirect.com
sin, a marker for early endosomes and endosome-derived

synaptic-like microvesicles in TNTs [31]. However,

neither GFP nor the small cytoplasmic dye calcein could

move along the nanotubes, and the authors suggest that

the dense packing of F-actin inside the nanotube may

impose functional constraints on free diffusion. TNTs

resemble PDs in some mechanistic aspects. For example,

TNTs are sensitive to latrunculin B, and therefore prob-

ably use an F-actin-dependent transport mechanism, and

viral transport through PDs is also sensitive to this inhi-

bitor [32�]. Another parallel is that the microtubule

cytoskeleton does not appear to be important for TNT

or for PD transport [22,32�]. However, a major difference

is that TNTs are transient and variable in location,

whereas in plant cells PDs are thought to be stable.

One possibility is that PDs could provide sites for nano-

tube formation between plant cells. The discovery of

TNTs is exciting because it suggests a novel and testable

hypothesis of macromolecular trafficking involving vesi-

cular transport through PDs.

Although TNTs are structurally distinct from the PDs

found in higher plants, they are more similar in structure

to the PDs of Chara corallina, a characean algae thought to

be a transition species between algae and higher plants

[33] (Figure 1). PDs in Chara form after cytokinesis and,

like TNTs, lack an ER desmotubule. An intriguing idea

is that the primitive PDs in Chara are the precursors of

higher plant PDs and also share some functional similarity

with TNTs.

Recently identified PD-localizing proteins support the

hypothesis of vesicular PD trafficking via exo-endocytosis

or via TNTs. Escobar et al. expressed libraries of random,

partial cDNAs fused to GFP in tobacco using a tobacco

mosaic virus (TMV) vector [34]. One of these partial

cDNAs encoded a protein related to a RabGTPase. Rabs

play a role in the determination of vesicle transport

specificity [35] and might bring cargo to the PD after

vesicle packaging. Additional evidence for a role of vesi-

cles in PD trafficking comes from the identification of

KNOLLE (target-soluble N-ethyl-malleimide-sensitive-

factor attachment protein in the syntaxin family), a t-

SNARE involved in vesicle targeting, as an interacting

partner of the grapevine fanleaf virus MP [36].

Plant transcription factors may move through plasmodes-

mata by any of the above mechanisms, and there is

evidence for both non-selective passive transport [37]

and selective transport [10,38��]. The idea that transcrip-

tion factor movement through PDs occurs by a receptor-

mediated mechanism is enticing, as this kind of selective

transport mechanism is observed at the nuclear pore.

However, no PD targeting signals in transcription factors

or PD receptors for transcription factors have been

definitively identified. It is possible that the trafficking

of some plant transcription factors may occur after
Current Opinion in Cell Biology 2004, 16:500–506
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Figure 1
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Intercellular connections in animals, higher plants and algae. (a) Transmission electron micrograph (TEM) of a TNT between cultured animal

PC12 cells shown in longitudinal section. Reprinted with permission from [30��]. Copyright 2004 by the AAAS. (b) TEM of transverse sections

of Chara PD, demonstrating lack of a desmotubule. (c) TEM of simple PD in young walls of the algae Chara, in longitudinal section. (b) and (c)

reprinted with permission from [33]. Copyright 1994 by Springer. (d) TEM of a primary or simple PD in longitudinal section, from mature tobacco

leaf showing the internal desmotubule (arrowed). Reprinted with permission from [57]. Copyright 1992 by the American Society of Plant Biologists.

(e) A cartoon depicting the PD shown in (d). CW, cell wall; Dt, desmotubule; ER, endoplasmic reticulum; PM, plasma membrane.
packaging in the Golgi via classical exo- and endocytosis,

or via the movement of microvesicles along TNT-like

structures in PDs.

Movement of viruses through plasmodesmata
Although microtubules were once thought to be impor-

tant for viral MP trafficking [18,39], new data dispute this

hypothesis. Using DNA shuffling, Gillespie et al. found

that a TMV MP mutant (MPR3) with limited affinity to

microtubules actually showed enhanced trafficking [22],

and they suggest that this mutant reveals a role for

microtubules in MP degradation, rather than in targeting

to PDs. Consistent findings were described by Kragler et
al., who used a cytoplasmic two-hybrid screen to identify

MPB2C [23��], a microtubule-associated protein that

interacts with the TMV MP. Their elegant studies co-

localized MPB2C, microtubules and MPs in vivo, and

functional assays showed that co-expression of MPB2C

actually inhibited cell-to cell movement of TMV MP,

again suggesting a negative relationship between MP

localization to microtubules and cell-to-cell movement.

Furthermore, intact TMV viral replication particles traffic

cell-to-cell without the involvement of microtubules

[32�].

Additional cellular proteins that interact with MPs and

may be involved in targeting to PDs have been identified.

For example, the TMV MP interacts with pectin methyl-

esterase (PME) [40], an enzyme that modifies the cell

wall component pectin. An appealing idea is that this
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interaction allows the MP to hitch a ride to the cell

periphery and to PDs [24]. Insights come from studies

of potato virus X, which moves intercellularly using the

viral coat protein and triple-gene block (TGB) proteins

[41]. A yeast-two hybrid assay with the TGB 12kDa

protein identified interacting proteins that themselves

interact with b-1,3-glucanase [42], an enzyme involved

in callose degradation. As callose is found at the openings

of PDs and is involved in regulating pore closure [43,44],

it is possible that potato virus X uses this enzyme for

targeting to PDs, and also to modify callose to promote

viral spread.

MPs may also use chaperones to facilitate their traffick-

ing, since the beet yellow virus depends on a virally

encoded heat shock protein 70 (HSP70) chaperone homo-

log [45]. HSP70s facilitate protein transport into orga-

nelles [46] and are also involved in protein targeting to

nuclei and to other cellular locations (reviewed in [4]).

Some MPs also interact with chaperones of the DNAJ

class [47], which modulate HSP70 activity. Proteins cross-

reacting with HSP70 antibodies were detected in a PD-

enriched biochemical fraction. Several of these HSP70s

were cloned from a Curcurbita maxima stem cDNA library

using degenerate primers based on the conserved ATPase

domain [4], and the two HSP70s that were present in

phloem sap could traffic cell-to-cell and increase the PD

SEL. This new subclass of phloem HSP70s may serve as

endogenous movement chaperones, stabilizing ribonu-

cleoprotein (RNP) complexes as they pass from the
www.sciencedirect.com
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companion cells into the enucleate sieve tubes of the

phloem. Alternatively, they may modulate the PD pore

itself by increasing the SEL to facilitate trafficking into

the phloem.

Molecular components of plasmodesmata
The molecular components of PDs and their associated

trafficking pathways have, until recently, been elusive. It

is likely that the actin cytoskeleton plays distinct roles,

including regulating the SEL, trafficking cargo to and

from the PD [27], and recycling cargo (reviewed in [27]).

Centrin [48], a calcium-binding cytoskeletal protein, and

calreticulin [49], a calcium-sequestering protein, also

localize to PDs and might modulate their function in

response to calcium signaling. Indeed, calcium signals

rapidly and transiently regulate PD permeability [50],

though the mechanisms they use to influence plasmo-

desmal pore size have yet to be discovered. An insight

into a potential mechanism comes from studies of sieve

elements, the conductive cells of the phloem, which are

reversibly plugged by calcium-sensitive contractile pro-

teins that act as ‘cellular stopcocks’ [51]. One could

imagine calcium regulating the SEL in PD by causing

similar conformational changes in proteins.

A new hunt for PD proteins is yielding tantalizing results

that demonstrate the complexity of these channels. Two

of the candidate PD proteins identified in the viral screen

mentioned previously [34] are potentially involved in

redox signaling. One of these is a monohydroascorbate

reductase homolog. Monohydroascorbate radicals are

produced in response to TMV infection [52], and it is

possible that the monohydroascorbate reducatase homo-

log localizes to PDs only transiently, in response to TMV

infection. For all of the genes identified in this screen, the

logical next step will be to confirm the localization of the

native full-length gene products, and to ask if their PD

localization is a function of viral infection or whether it

plays a role in normal PD function. A second example of

environmental regulation of PD composition and func-

tion comes from studies of the remarkable freeze-tolerant

woody plant, Cornus sericea, which is capable of surviving

temperatures as low as �2698C. Cold treatment induced

the accumulation of a 24 kDa dehydrin-like protein at

PDs [53], and it was suggested that this may protect the

cell membrane from mechanical damage. We are prob-

ably just beginning to understand the dynamic physiol-

ogical modifications that PDs undergo in response to

changing environmental conditions.

Plasmodesmata and plant development
Details of the mechanisms by which developmental

signals traffic through PDs are beginning to emerge.

To find host-cell factors involved in trafficking, Lee

et al. fished for binding partners of a phloem mobile

MP paralog, CmPP16 [54��]. They affinity-purified

NON-CELL-AUTONOMOUS PATHWAY PRO-
www.sciencedirect.com
TEIN1 (NCAPP1) from a PD-enriched cell-wall fraction

from cultured tobacco cells. Ultrastructural studies loca-

lized NtNCAPP1 to the ER, in the vicinity of, but never

directly in, PDs, which raises the intriguing question of

NtNCAPP1’s specific mode of action. Perhaps NCAPP1

is involved in targeting to PDs, rather than contributing

directly to the translocation event. In tobacco plants

expressing a dominant-negative form of NCAPP1 with

an N-terminal deletion, the interactions of both CmPP16

and TMV MP with PDs were blocked. However, traffick-

ing of KN1 or of the cucumber mosaic virus MP were

unaffected, suggesting distinct mechanisms of trafficking

for these proteins. The NCAPP1 mutant transgenic lines

also showed severe developmental defects, including lack

of organ symmetry and whorl separation, enlarged term-

inal flowers, loss of apical dominance, highly asymmetric

leaves, dwarfing, and disorganization of cell layers. The

authors suggest that the floral phenotype resembles the

phenotype caused by overexpression of the tobacco

ortholog of LFY, and hypothesize that NCAPP1 may

regulate LFY trafficking.

A potential role for NCAPP1 in the regulation of LFY

trafficking is disputed by results from Wu et al. [37]. From

studies of LFY deletion constructs, they conclude that

LFY trafficking in the meristem occurs via a non-targeted

or passive mechanism. If this is true, why do the domi-

nant-negative NCAPP1 lines show a phenotype reminis-

cent of LFY overexpression? The involvement of a host-

cell factor in LFY movement is at odds with the hypoth-

esis that this protein moves by diffusion. However, if

NCAPP1 modifies the shape or charge of the PD pore or

of the LFY protein itself, it may change the ability of LFY

to move passively through PD. The logical next step to

reconcile the data from these groups would be to test the

movement of LFY in the dominant-negative NCAPP1

lines.

In recent studies of KN1 homeodomain protein traffick-

ing in the model plant Arabidopsis thaliana, Kim et al.
reported tissue-specific regulation of trafficking [38��]. A

GFP–KN1 fusion was able to traffic from the inner layers

of the mature leaf to the outer layer, the epidermis — but

strikingly not in the opposite direction (Figure 2). How-

ever, in the shoot meristem, where cells are in a rela-

tively undifferentiated state, the GFP-KN1 fusion was

able to traffic out of the epidermal (L1) layer. These

results, taken together with early studies of Chara PDs

(reviewed in [55]) suggesting that symplastic isolation

(PD closure) plays a role in differentiation, provide an

insight into why plasmodesmata change their function

during differentiation. The changes in PD during devel-

opment may regulate the trafficking of factors involved

in cell-fate determination and cell-cycle regulation.

Genetic screens using KN1 trafficking as a tool to dissect

the mechanisms of PD regulation should be enlighten-

ing in this regard.
Current Opinion in Cell Biology 2004, 16:500–506
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Figure 2
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Trafficking of KN1 in Arabidopsis is under tissue-specific and developmental regulation. (a) Light micrograph of a leaf in cross-section showing

the mesophyll (m) and epidermal (e) cell layers. (b) A mesophyll-specific promoter driving expression of the cell-autonomous ER localized GFP.

(c) The same promoter driving a GFP–KN1 fusion shows fluorescence in epidermal cells caused by trafficking of the fusion protein. (d) An

epidermal-specific promoter driving the cell autonomous GFP. (e) The same promoter driving GFP-KN1expression; note the lack of movement

from epidermis to underlying cell layers. (f) An epidermal-specific promoter driving GFP-SHOOTMERISTEMLESS (an Arabidopsis homolog of

maize KN1) in the shoot meristem. Note that in this case trafficking out of the epidermal layer does occur into underlying L2 cells (arrowed). The

red color in (b–f) is due to chlorophyll auto-fluorescence. Reprinted with permission from [38��]. Copyright 2003 by Development and Company of

Biologists LTD. The cartoon below depicts a plant whose organs are shown in (a–f).
In a novel screen to identify Arabidopsis mutants defective

in regulating the PD SEL, Kim et al. isolated a mutant

called increased size exclusion limit 1 or ise1 or [56]. The SEL

is down-regulated at the torpedo stage of embryo devel-

opment, and this transition does not occur in ise1 mutant

embryos. One of the remarkable phenotypes of ise1
mutants is that all root epidermal cells make hairs

(specialized cells in the root to increase surface area for

nutrient and water uptake from soil), whereas in the wild-

type, rows of hair cells are separated by rows of non-hair

cells. The ise1 root phenotype is mimicked by transgenic

plants constitutively over-expressing CPC, a positive reg-

ulator of root hair development [12]. Interestingly, the

CPC protein itself normally traffics from root-hair cells to

non-root-hair cells, where it represses GLABRA2, a nega-

tive regulator of hair-cell fate. Might ise1 mutants affect

the trafficking of CPC or other factors required for root

hair development? An interesting experiment would be to

test for the presence of CPC and other root-hair devel-

opmental proteins in the ise1 mutants.

Conclusions
PDs are proving to be complex, but the studies discussed

here contribute significantly to our understanding of how
Current Opinion in Cell Biology 2004, 16:500–506
trafficking occurs between plant cells. PDs probably use

multiple trafficking pathways to regulate physiological

processes, and distinct mechanisms of transport through

simple and branched PDs probably afford developmental

flexibility. The discovery of a cell-to-cell transport

mechanism based on membrane continuity in animal

cells should encourage plant researchers to use the tools

and knowledge gained from this system. Experiments

designed to uncover the mechanisms controlling the

selective permeability of PDs to passive and active trans-

port will certainly guide research over the next few years.

Plant viruses and endogenous movement proteins such as

transcription factors or phloem proteins will continue to

be useful tools in the elucidation of the different modes of

active transport, and analysis of cell-to-cell trafficking

mutants should reveal how PDs control plant-cell biology

and orchestrate development.
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