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Multivesicular endosomes are important as compartments for

receptor downregulation and as intermediates in the formation of

secretory lysosomes. Work during the past year has shed light on

the molecular mechanisms of protein sorting into multivesicular

endosomes and yielded information about the machinery involved

in multivesicular endosome formation. Monoubiquitination

functions as a signal for sorting transmembrane proteins into

intraluminal vesiclesof multivesicular endosomesand subsequent

delivery to lysosomes. A molecular machinery that contains the

ubiquitin-binding protein Hrs/Vps27 appears to be central in this

sorting process. Three conserved multisubunit complexes,

ESCRT-I, -II and -III, are essential for both sorting and

multivesicular endosomes formation. Enveloped RNA viruses

such as HIV can redirect these complexes from multivesicular

endosomes to the plasma membrane to facilitate viral budding.
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Abbreviations
EGF epidermal growth factor

ESCRT endosomal sorting complex required for transport

FYVE conserved in Fab1p/YOTB/Vac1p/EEA1

LBPA lyso-bisphosphatidic acid
MVE multivesicular endosome

LRP low-density lipoprotein receptor related protein

PI3P PtdIns 3-phosphate

PtdIns phosphatidylinositol

STAM signal-transducing adaptor molecule

TGN trans-Golgi network

UIM ubiquitin-interacting motif

Vps vacuolar protein sorting

Introduction
The ‘multivesicular body’ was described by electron

microscopists some 50 years ago ([1�] and references

therein) as an organelle that consists of a limiting mem-

brane enclosing many (sometimes several hundred) inter-

nal vesicles of 40–90 nm. Later work has shown that

multivesicular bodies represent endocytic intermediates

(Figure 1), and here we will refer to them as ‘multivesicular

endosomes’ (MVEs). MVEs are formed from sorting (early)

endosomes and thus contain molecules that have been

internalised through endocytosis. They also receive bio-

synthetic cargo from the trans-Golgi network (TGN),

including precursors of lysosomal enzymes. In most cell

types, early MVEs (also called endosomal carrier vesicles)

mature into — or fuse with — late MVEs (also called late

endosomes), which ultimately fuse with lysosomes. The

sorting of transmembrane proteins into topologically dis-

tinct limiting and intraluminal membranes (Figure 2) has

been proposed to serve several important functions. First,

transmembrane proteins in the intraluminal membrane

will be susceptible to degradation by lysosomal hydrolases,

whereas proteins in the limiting membrane are resistant

because they only expose their luminal region (which is

usually protease-resistant, owing to extensive glycosyla-

tion). Second, intraluminal vesicles might represent storage

vehicles for transmembrane proteins that are to be released

from the cell in a regulated manner. Third, receptor signal-

ling is, at least in principle, possible from the limiting

membrane of MVEs, but not from the membranes of

intraluminal vesicles. This means that sorting into MVEs

can determine both the delivery of transmembrane pro-

teins to lysosomes and the extracellular space, and also the

ability of endocytosed receptors to transmit signals.

In specialised cell types, for example melanocytes and

haematopoietic cells, MVEs serve as intermediates in the

formation of secretory lysosomes, such as melanosomes,

MHC II compartments and lytic granules [2�] (Figure 1).

The formation of these specialised organelles requires

sorting of specific proteins at the level of MVEs. Upon an

appropriate stimulus, secretory lysosomes fuse with the

plasma membrane, and any intraluminal vesicles will be

shed into the extracellular space or transferred to neigh-

bouring cells. In the case of antigen-presenting cells, such

vesicles are referred to as exosomes, which have attracted

profound interest as vehicles of immunomodulation

[3�,4�]. Exosome-like vesicles can also be used as carriers

for morphogens, as demonstrated by the finding that

MVE-derived vesicles known as argosomes mediate dis-

persion of the morphogen Wingless over large distances in

Drosophila imaginal discs [5].

In this review, we will highlight some recent studies,

published in 2002 and 2003, that shed light on the

molecular mechanisms of the sorting into and formation

of MVEs.

Ubiquitin as a sorting signal for
multivesicular endosomes
To understand the molecular mechanisms of receptor

downregulation, a key issue has been to define the signals
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that target transmembrane proteins into intraluminal

vesicles of MVEs. Several studies have shown that mono-

ubiquitination can serve as a signal for both endocytosis

and MVE sorting [6–10] (Table 1), and recombinant

fusion of Golgi-, plasma-membrane- or endosome-located

transmembrane proteins with ubiquitin has been shown

to act as a strong signal for lysosomal targeting [11,12,13�].

We are now beginning to learn how monoubiquitin-

mediated protein sorting works. An important clue came

from a bioinformatical screen for proteins containing a

motif that mediates binding of the proteasomal subunit

S5a to ubiquitin. Such a ubiquitin-interacting motif

(UIM) was identified in several known regulators of

endocytosis, including epsin and Eps15, as well as several

putative regulators of MVE sorting [14]. This finding was

quickly followed up by experimental studies that showed

that UIMs do bind ubiquitin [13�,15��,16, 17�–20�]. More-

over, the UIMs of Ent1/Ent2 (yeast homologues of epsin)

are important for endocytosis of the a-factor receptor,

which is known to be ubiquitin-dependent [19�]. Like-

wise, the UIM of the early-endosomal protein Hrs is

required for sorting of a transferrin-receptor–ubiquitin

fusion protein to the degradative pathway [13�], and

the UIMs of the yeast Hrs homologue Vps27 are required

for sorting of endocytosed a-factor receptor, newly

synthesised carboxypeptidase S and a ubiquitin fusion

reporter construct to the vacuole [18�,19�]. These findings

suggest that UIM-containing proteins might interact with

ubiquitinated cargo at the plasma or early endosome

membrane and thereby mediate its sorting into endocytic

or intraluminal vesicles.

Even though this is an attractive hypothesis, several com-

plications have to be considered. First, UIMs only bind

ubiquitin with low affinity (Kd values in the high micro-

molar range), and it is unlikely that this interaction alone is

strong enough to mediate efficient sorting [13�,20�]. It is

striking, however, that both epsin and Hrs are complexed

to other UIM-containing proteins (Eps15 and Eps15–

STAM [signal-transducing adaptor molecule], respec-

tively) [18�,19�,21], so perhaps multi-UIM-containing

Figure 1

Current Opinion in Cell Biology

Late MVE

Lysosome

Lytic granule

Exosomes
Melanosome

Golgi

ER

(b)

(a)

(c)

(d)

Early
MVE

Coated pit

Endocytic
vesicle

Sorting
endosome

MIIC
compartment

Nucleus

Formation and functions of MVEs. Multivesicular endosomes are formed after invagination of the limiting membrane of the sorting endosome. They are

versatile and can serve different functions in different cell types, such as being precursors for (a) lytic granules in T lymphocytes, (b) MHC class II

compartments and exosomes in antigen-presenting cells, (c) melanosomes in melanocytes, and (d) late MVEs/lysosomes in most nucleated cells.

Both endocytic and biosynthetic proteins are sorted in and out of MVEs, indicated by arrows. Clathrin-coated buds are found at the plasma

membrane, the TGN and on tubular regions of the sorting endosome, whereas flat clathrin coats are found on early endosomal compartments. Clathrin

is indicated in red.
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sorting complexes bind with high avidity to multiubiqui-

tin-containing receptor complexes. Second, all UIM-con-

taining endocytic proteins tested (Epsin, Eps15, Eps15R,

Hrs and STAM) become monoubiquitinated upon recep-

tor activation [20�,22], and in principle the UIM could

be a signal for monoubiquitination rather than a sorting

determinant. More likely, the monoubiquitination serves

to regulate the sorting functions of UIM-containing pro-

teins, for example by sterically controlling interactions

with cargo or sorting components or by facilitating

formation of large complexes through multiple UIM–

ubiquitin interactions. Third, even if UIM-containing

proteins do function in receptor sorting, they may not

necessarily interact directly with cargo — interactions

might be indirect via ubiquitinated adaptor proteins.

Fourth, UIM-containing proteins are not the only

ubiquitin-binding proteins with a putative role in endo-

cytic sorting. Yeast Vps23 and its mammalian homologue

Tsg101 contain a UEV (ubiqutin E2 variant) domain,

which, like the UIM, binds ubiquitin with low affinity

[23�]. Since Vps23 and Vps27 (Hrs) function in vacuolar

sorting of the same ubiquitinated cargo [24], this raises

the question as to how their interactions with cargo could

be coordinated. Genetic evidence suggests that Vps27

functions upstream of Vps23 [1�], raising the possibility

that Vps27 might capture ubiquitinated cargo initially and

subsequently deliver it to Vps23 (see below). However,

the functional relationship between these two ubiquitin-

binding proteins needs to be clarified.

Hrs and ubiquitinated proteins are found
in a flat clathrin coat on endosomes
Epsin and Hrs, two UIM-containing proteins that func-

tion, respectively, at the plasma membrane and at the

early endosome, share several features. They both con-

tain a phosphoinositide-binding domain; they both bind

Eps15; and they both bind clathrin. The clathrin-binding

ability of epsin is easy to reconcile with its role in clathrin-

dependent endocytosis [25]; however, the significance of

the clathrin-binding ability of Hrs is more elusive. Hrs is

localised to endosomal microdomains that contain a flat,

‘bilayered’ clathrin-containing coat morphologically dis-

tinct from the budding clathrin coat found on endosomal

tubules [13�,26�]. Overexpression of Hrs recruits clathrin

to endosomes, whereas wortmannin (a phosphatidylino-

sitol 3-kinase inhibitor) treatment, which causes Hrs to

dissociate from endosome membranes, leads to a dissipa-

tion of the bilayered coat [26�,27]. This suggests that Hrs

might function as a clathrin adaptor on endosomes.

However, as the bilayered clathrin coat does not appear

to form buds, what is its function? The finding that

ubiquitinated membrane proteins are enriched in this

coat suggests that it could play a role in endosomal

retention of ubiquitinated membrane proteins before

their inclusion into intraluminal vesicles of MVEs

[13�,26�]. Since clathrin has not been detected inside

intraluminal vesicles by electron microscopy, the

bilayered coat either has to dissociate before endosomal

invagination, or invagination occurs at sites adjacent to

the coat.

Figure 2
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Schematic representation of an MVE. Multiple proteins and lipids have

been detected on internal vesicles and on the limiting membrane of

multivesicular endosomes. It is not clear, however, if all these molecules

play a physiological role in MVEs. The molecules indicated here

represent a selection of proteins and lipids that are considered typical

candidates found in late MVEs [3�,42�].

Table 1

Examples of transmembrane proteins sorted into MVEs via
ubiquitin (Ub).

Protein Ub facilitates

endocytosis

Ub facilitates

MVE sorting

Refs

EGF receptor ? Yes [36]

Interleukin-2 receptor No Yes [7]

CXCR4 No Yes [8]

b2 adrenergic receptor Yes� Yes [9]

Growth hormone receptor Yes� Yes [37]

LRP No Yes� [39�]

ENaC Yes Yes [10]

Ste2 (Sc) Yes� Yes [6]

Ste3 (Sc) Yesy Yesy [62�]

CPS (Sc) z Yes [24]

Phm5 (Sc) z Yes [12]

Hmx1 (Sc) z Yes [12]

CPS, carboxypeptidase S; CXCR4, a chemokine receptor; ENaC,

epithelial sodium channel; Hmx1, haem oxidase; Phm5, a

polyphosphate phosphatase; Sc, S. cerevisiae; Ste2, a-factor

receptor; Ste3, a-factor receptor. �Sorting requires ubiquitination of

accessory components. yTrue for constitutive receptor trafficking.

Ligand-induced endocytosis and recycling is ubiquitin-independent.
zDirectly sorted to MVEs from TGN.
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Ubiquitin ligases that mediate multivesicular
endosome sorting
The covalent attachment of ubiquitin to protein lysine

groups is a complex process that ultimately requires the

activity of substrate-specific ubiquitin ligases [6]. Numer-

ous ubiquitin ligases, which are characterised by RING or

HECT domains, are expressed in yeast and mammalian

cells. Although we know little about the protein deter-

minants that dictate the specificity of most ubiquitin

ligases, there are many examples of their importance in

endocytosis, MVE sorting and receptor signalling. In

yeast, the HECT-domain-containing ubiquitin ligase

Rsp5 is important for endocytosis of the G-protein-

coupled a-factor receptor Ste2 (probably by ubiquitinat-

ing a trans-acting factor) [28] and for MVE sorting of the

amino acid permease Gap1 [29]. A transmembrane

RING-domain-containing ubiquitin ligase, Tul1, ubiqui-

tinates Golgi proteins that have polar transmembrane

domains, and signals their entry into MVEs [30�]. In

Drosophila and vertebrates, the Notch–Delta receptor pair,

which among other things controls neuronal differentia-

tion, is regulated via endocytosis and MVE sorting. At least

four ubiquitin ligases are known to ubiquitinate these

proteins and to regulate their activity [31�]. Drosophila/

Xenopus Neuralised and zebrafish Mind Bomb ubiquitinate

Delta, thus causing its endocytosis and degradation [32–

34,35�], whereas mouse Itch/AIP4 and Sel-10 (and their

respective Drosophila and Caenorhabditis elegans homolo-

gues) regulate Notch in a similar fashion [31�].

Signalling by epidermal growth factor (EGF) receptors

is likewise attenuated by ligand-induced endocytosis

and MVE sorting, as demonstrated by the finding that

EGF receptor signalling in Drosophila is increased when

MVE formation is impaired [15��]. The RING-domain-

containing ubiquitin ligase Cbl appears to play a major

role in MVE sorting of the activated EGF receptor by

binding to the autophosphorylated receptor and causing

its ubiquitination [36].

The existence of multiple ubiquitin ligases with distinct

substrate specificities illustrates that spatiotemporal con-

trol is essential for protein ubiquitination and sorting.

Crosstalk between proteasomal and
lysosomal protein degradation
Polyubiquitinated proteins are targeted to proteasomes

for proteolysis, whereas monoubiquitinated proteins are

targeted to lysosomes or vacuoles [6]. However, a surpris-

ing connection between proteasomal and lysosomal

degradation has been identified recently. Proteasome

inhibitors prevent lysosomal targeting of growth hormone

and EGF receptors and the multifunctional receptor LRP

(low-density lipoprotein receptor related protein), and

they do so by excluding the receptors from entering

intraluminal vesicles of MVEs, without affecting MVE

formation as such [37,38,39�,40�]. In principle, protea-

some inhibitors might inhibit MVE sorting by reducing

the available pool of ubiquitin, but this does not appear to

be the case, as EGF receptors are efficiently ubiquiti-

nated even in the presence of proteasome inhibitors [40�].
Moreover, while proteasome inhibitors inhibit endocy-

tosis of growth hormone receptors, they are without effect

on endocytosis of EGF receptors and LRP [39�]. It is

possible that unknown proteins might serve as negative

regulators of MVE sorting, and that these are inactivated

by polyubiquitination and proteasomal degradation.

There is indeed evidence that polyubiquitinated pro-

teins are associated with endosomes [17�]. An antibody

specific for conjugated polyubiquitin stains Hrs- and

clathrin-containing microdomains on early endosomes

[21], suggesting that polyubiquitinated proteins might

be localised to the bilayered endosomal clathrin coat.

It is worth noting that polyubiquitin might also function

as an MVE targeting signal. The yeast general amino acid

permease Gap1 becomes polyubiquitinated in the TGN

under nutrient-rich growth conditions, and this signals its

entry into MVEs [6]. Since the monoubiquitinated recep-

tor is sorted from the TGN to the plasma membrane, this

suggests the existence of sorting machineries in the TGN

that can distinguish between mono- and polyubiquiti-

nated membrane proteins.

Non-ubiquitinated membrane proteins can
also be sorted to multivesicular endosomes
Although monoubiquitin is an important sorting determi-

nant for MVEs, non-ubiquitinated transmembrane pro-

teins also can be sorted into intraluminal vesicles. This is

true for yeast Sna3 (whose function is not known) [12], as

well as for mammalian LRP. The latter protein never-

theless appears to require the ubiquitin system, since its

MVE sorting is inhibited by proteasome inhibitors [39�].
On the other hand, Sna3 is efficiently targeted to MVEs

even when the levels of unconjugated ubiquitin are

reduced [12]. These results suggest that although ubi-

quitin is a versatile signal for MVE targeting, alternative

targeting mechanisms also exist.

The MVE sorting machinery that recognises non-ubiqui-

tinated proteins is not known, but GASP (G-protein-

coupled receptor-associated sorting protein), represents a

possible component because it binds to non-ubiquitinated

d-opioid receptors and targets them into MVEs [41�].

Lipids and multivesicular endosome sorting
The fact that intraluminal membranes have different

lipid compositions than limiting membranes [3�,42�]
(Figure 2) indicates that lipids are sorted along different

routes to the membranes of MVEs. This suggests that

protein sorting into MVEs might, at least in part, depend

on lipids. Consistent with this, phosphatidylinositol

(PtdIns) 3-phosphate (PI3P), which is formed through

phosphorylation of PtdIns by a class III PtdIns 3-kinase, is

Protein sorting into multivesicular endosomes Raiborg et al. 449
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important for several steps of endocytic trafficking,

including MVE formation [43,44]. This lipid is found

on limiting and intraluminal endosomal membranes [45],

and it recruits proteins containing phox homology or FYVE

(conserved in Fab1p/YOTB/Vac1p/EEA1) domains to

endosomes [43,46]. Hrs is an example of a FYVE-domain

protein that is recruited to endosomes via PI3P binding

[47]. Because the absence of Hrs inhibits formation of

MVEs [15��], similar to effects seen when PI3P formation

is inhibited [44], a major role of PI3P in MVE formation

might be to recruit Hrs. This does not rule out the possi-

bility, however, that other PI3P binding proteins, such as

the PI3P 5-kinase Fab1/PIKfyve, might also regulate MVE

sorting [1�].

While PI3P functions by recruiting cytosolic proteins to

endosomal membranes, other lipids could have a more

direct effect by creating local membrane environments

that favour MVE sorting and formation of intraluminal

vesicles. It is interesting to note that tetraspanins and

glycosylphosphatidylinositol-linked proteins, which are

known to associate with cholesterol- and sphingolipid-

rich ‘rafts’ [48], are enriched in intraluminal vesicles, and

exosomes have been found to contain high levels of

cholesterol and sphingomyelin [3�]. Clustering of proteins

into lipid rafts could thus be linked to their intraluminal

sorting. While sphingomyelin and cholesterol are candi-

date lipids for mediating protein sorting into MVEs, an

unusual phospholipid, lyso-bisphosphatidic acid (LBPA),

is a candidate for mediating inwards invagination of

endosomal membranes. Because of its unusual structure,

LBPA is inefficiently degraded by lipases, and it accu-

mulates in intraluminal vesicles of late MVEs [49]. Anti-

bodies against LBPA (which are observed in patients

suffering from Antiphospholipid syndrome) inhibit

MVE formation, suggesting that LBPA does play a role

in this process. The inverted-cone shape of LBPA might

favour the inward invagination required to form MVEs. It

is worth noting, however, that LBPA has not yet been

identified in yeast. This lipid might thus participate in an

alternative mechanism of MVE formation found only in

higher cells.

ESCRT complexes are required for sorting
and multivesicular endosome formation
Electron microscopic evidence suggests that the intra-

luminal vesicles of MVEs are formed through invagina-

tion and pinching-off of the endosome membrane [1�].
Since this vesicle-budding process occurs in the opposite

orientation compared with other budding events of cel-

lular membranes (i.e. outwards from the cytosol), it is

evident that the molecular mechanisms must be different

from the well-characterised mechanisms of, for instance,

coated-vesicle budding at the plasma membrane. A

screen for vacuolar protein sorting (vps) mutants in yeast

has proven highly successful in identifying the basic

machinery for MVE formation [1�]. The so-called class

E subgroup of vps mutants, which currently comprise 17

members, is characterised by the absence of intraluminal

vesicles in the vacuole (such vesicles become evident in

wild-type yeast when vacuolar hydrolase activity is

blocked). The class E mutants are further distinguished

by a cup-shaped multilamellar organelle, the class E com-

partment [24]. This compartment is thought to represent

an endosome that is unable to form intraluminal vesicles.

Recent work has demonstrated that the Vps class E

proteins can be found in several subcomplexes, including

Vps27–Hse1 [18�] and the ‘endosomal complexes

required for transport’, ESCRT-I, ESCRT-II and

ESCRT-III [24,50��,51�] (Figure 3). ESCRT-I consists

of three subunits (Vps23, Vps28 and Vps37) and binds

ubiquitinated proteins via the Vps23 subunit (see above).

This complex is therefore likely to be involved in the

sorting of ubiquitinated proteins, possibly downstream of

Vps27–Hse1. ESCRT-II, which also contains three sub-

units (Vps22, Vps25 and Vps36), appears to function down-

stream of ESCRT-I, since its overexpression can suppress

the loss of ESCRT-I (but not vice versa) [1�]. Intriguingly,

even this complex contains a ubiquitin-binding subunit,

Vps36, which binds ubiquitin via its NZF (Np14 zinc

finger) domain [52].

The ESCRT-II complex is recruited transiently to endo-

some membranes and is required for the membrane

recruitment of ESCRT-III, suggesting that ESCRT-II

functions upstream of ESCRT-III. The latter complex

consists of two subcomplexes (Snf7–Vps20 and Vps2–

Vps24) which seem to be recruited consecutively to

membranes. The membrane dissociation of the ESCRT

complexes is controlled by the AAA-type (chaperone-

like) ATPase Vps4. In addition, a few other Vps class

E proteins (Fti1, Vps60, Bro1 and Vps44) are involved in

MVE formation, although their relationship with the

ESCRT complexes is not known [1�]. With the exception

of Vps37, mammalian equivalents of all Vps class E

proteins have been identified, indicating that these com-

plexes serve a conserved function. Indeed, Tsg101 and

hVps28, the human homologues of Vps23 and Vps28, are

found on endosomes and are required for lysosomal

trafficking of endocytosed EGF [17�].

The fact that both Vps27–Hse1 (Hrs–STAM), ESCRT-I

and ESCRT-II bind ubiquitin suggests that ubiquiti-

nated cargo can be relayed between these complexes

as part of the sorting process (Figure 3). But how do

the ESCRT complexes mediate inward vesiculation of

endosomal membranes? Their subunit structures do not

leave many clues. Perhaps the most striking feature is that

all the ESCRT-III subunits are small coiled-coil proteins.

This is reminiscent of another group of small coiled-coil

proteins, the SNARE (soluble N-ethylmaleimide-sensitive

factor attachment protein receptor) proteins, which med-

iate membrane docking and fusion through the formation

450 Membranes and organelles
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Figure 3
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Model for protein sorting into MVEs. (a) Schematic overview of the sorting of ubiquitinated membrane proteins from endocytic and biosynthetic

pathways into multivesicular endosomes and lysosomes. Ubiquitin (Ub), indicated by a yellow flag, is attached to membrane proteins that are

being endocytosed or transported from the TGN. This causes the proteins to be retained in Hrs- and clathrin-containing microdomains of the

endosome membrane. Subsequently, the membrane proteins are sorted to intraluminal vesicles and targeted via MVEs for lysosomal
degradation/processing. Note that a non-ubiquitinated membrane protein is not retained in Hrs–clathrin microdomains and is recycled to the

plasma membrane. Clathrin coats are indicated in red. The size of the sorting endosome is overemphasised in order to show the sorting

machinery in some detail. The area indicated by a rectangle is highlighted in (b). (b) Schematic presentation of the recently identified protein

complexes that are involved in MVE sorting and formation. The lipid PI3P mediates the localisation of Hrs and its associated proteins Eps15,

STAM and clathrin to endosomal membranes. This complex binds to a ubiquitinated receptor and retains it in the endosome membrane.

Subsequently, the ubiquitinated receptor is delivered to ESCRT-I by interacting with Tsg101. The receptor is then relayed to ESCRT-II and

transported into an intraluminal vesicle, which is formed through polymerisation of ESCRT-III complexes. The membrane association of several of

these proteins is controlled by the AAA ATPase Vps4 (not shown). Before vesicle scission, the receptor is deubiquitinated. Arrows indicate the

direction of the sorting process.
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of energetically favourable tetrahelical coiled-coil bundles

[53]. Since the pinching-off of a vesicle towards the endo-

some lumen might be regarded as a membrane fusion of

the neck regions of the forming vesicle, a possible scenario

could be that ESCRT-III complexes, through stable

coiled-coil interactions, might function in inwards vesicle

scission. Vps4 could then, by analogy with the AAA ATPase

NSF (N-ethylmaleimide-sensitive factor) in membrane

fusion, function to untangle coiled-coils to reactivate

ESCRT complexes for further budding reactions.

Viruses hijack the multivesicular endosome
formation and sorting machineries
As well as the inwards budding of endosomal membranes,

another type of vesicle budding is also known to occur by

direction from the cytosol – that of enveloped viruses that

bud from the plasma membrane or into various organelles.

Recent studies show that several enveloped RNA viruses

reprogramme the MVE machinery for their budding [54�].
It has been known for some time that many small RNA

viruses, such as HIV and Ebola virus, do not encode their

own machineries for viral budding. Instead, they require a

cellular function that is activated by the so-called ‘late

domain’ of their membrane-associated structural proteins.

Two proline-rich motifs in the late domain, P(S/T)AP and

PPXY (where X is any amino acid), have been found to be

essential for viral budding, and recent results link both

these motifs to the MVE sorting machinery. The P(S/T)AP

motif of HIV binds Tsg101, and in Tsg101-depleted lym-

phocytes HIV is unable to bud from the plasma membrane

and instead forms stalks of unbudded virions [55]. HIV

budding also requires mammalian Vps4, indicating that the

ESCRT machinery is required for the scission of HIV

particles from the plasma membrane [56�]. Thus, the virus

appears to redirect the ESCRT complexes to the plasma

membrane. It is interesting to note that in macrophages,

HIV buds into MVEs [57�], so the virus is probably able also

to use the ESCRT machinery at its normal location.

The other late-domain motif that is important for viral

budding, PPXY, is a preferred binding motif for WW

domains found in the Nedd4 family of HECT-domain-

containing ubiquitin ligases. The recruitment of a ubi-

quitin ligase via the PPXY motif could perhaps explain

the fact that the HIV gag protein is ubiquitinated [54�].
The role of this ubiquitination is not known, but in vitro
studies have shown that the PSAP-motif-dependent

binding of Tsg101 to HIV gag is strongly increased when

the gag protein is also ubiquitinated [23�]. In a similar

manner, VP40 of the Ebola virus, which is required for

viral budding, binds Tsg101 via a P(S/T)AP motif and

Nedd4 via a PPXY motif [58�,59�]. Intriguingly, both a

P(S/T)AP and a PPXY motif can also be found in Hrs.

This raises the possibility that Hrs could play a role in

ESCRT and ubiquitin ligase recruitment to early endo-

somes and that viral proteins might function as Hrs

mimics at the plasma membrane.

Viruses not only parasitise on the machinery for MVE

formation — they may also usurp the MVE sorting

machinery to subvert immune surveillance. An interest-

ing example is provided by Kaposi’s-sarcoma-associated

herpes virus, whose gene product, K3, is a ubiquitin

ligase that ubiquitinates newly synthesised MHC class

I molecules, thus targeting them for lysosomal degrada-

tion in a Tsg101-dependent manner [60�]. Similarly, the

related M153R product of myxomavirus ubiquitinates

the T cell co-receptor CD4 and causes its lysosomal

degradation [61�]. Viral tampering with the MVE sorting

machinery could thus represent a widespread mechanism

of immune evasion.

Conclusion and future perspectives
During the past year, we have witnessed great progress

in our understanding of how MVEs are formed, and how

proteins are sorted into them. The time is approaching

when it might be possible to reconstitute MVE forma-

tion in the test tube from purified components. How-

ever, the mechanisms of MVE sorting and formation

may be more complicated than we like to believe. For

instance, mannose 6-phosphate receptors, which are

known to recycle to the TGN after delivering their

associated lysosomal enzymes to late MVEs, can be

detected in intraluminal vesicles of MVEs [3�]. Does

this mean that intraluminal vesicles can fuse back with

the limiting MVE membranes, or could it be that what

we perceive as intraluminal vesicles (by electron micro-

scopy) in some cases simply represent deep invagina-

tions? Furthermore, inhibition of PI3P formation on

endosomes by microinjected antibodies against class

III PtdIns 3-kinase appears to inhibit activated EGF

receptors from entering into intraluminal vesicles of

MVEs — but the receptors are nevertheless degraded

as normal [44]. These findings suggest that the relation-

ship between MVE sorting and receptor degradation

could be more complex in mammalian cells than that

described in yeast.

Aside from these complications, the following questions

remain to be addressed: How do ubiquitin ligases recog-

nise their specific targets? How can ubiquitin function to

recruit different sorting machineries at the plasma mem-

brane and at the endosome membrane? Does ubiquitin-

and lipid-mediated sorting into MVEs represent two

distinct pathways, or are they interlinked? By which

mechanisms are non-ubiquitinated proteins sorted to

intraluminal vesicles of MVEs? What is the role of the

bilayered clathrin coat on endosomes? How do Hrs/

Vps27 and the ESCRT complexes cooperate in protein

sorting and MVE formation? How do inwards invagina-

tions form? How do intraluminal vesicles pinch off from

the limiting membrane? By which mechanisms do

viruses reprogramme the MVE machineries? Hopefully,

an equivalent review in a few years time can provide most

of the answers.
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Update
Recent studies have shed more light on the role of ubi-

quitin in protein sorting into MVEs. Because many mam-

malian receptor tyrosine kinases, such as the EGF receptor,

migrate as smeared bands in SDS electrophoresis upon

ubiquitination, it has been thought that these proteins

become polyubiquitinated. This has been puzzling, since

monoubiquitin mediates MVE sorting in yeast. Two

papers now report that growth factor receptors, rather than

being polyubiquitinated become monoubiquitinated at

multiple lysine residues [63�,64�]. Thus, the principal

function of monoubiquitin as an MVE sorting signal has

been conserved from yeast to humans. The receptors for

hepatocyte growth factor (Met) and insulin-like growth

factor I provide new examples of growth factor receptors

that are downregulated following ubiquitination, the for-

mer in a Hrs-dependent manner [65�,66]. A new ubiquitin-

binding motif has been identified, the CUE domain [67].

This domain is found in several proteins of yeast and

mammalian origin, and the CUE domain of a regulator

of endocytic membrane fusion in yeast, Vps9, appears to

negatively modulate the function of this protein in receptor

trafficking [68]. This supports the idea that interactions

with monoubiquitin not only might mediate protein sorting

but also might serve to regulate protein activity.
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