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Abstract Abiotic stresses, such as drought, salinity,
extreme temperatures, chemical toxicity and oxidative
stress are serious threats to agriculture and the natural
status of the environment. Increased salinization of
arable land is expected to have devastating global effects,
resulting in 30% land loss within the next 25 years, and
up to 50% by the year 2050. Therefore, breeding for
drought and salinity stress tolerance in crop plants (for
food supply) and in forest trees (a central component of
the global ecosystem) should be given high research
priority in plant biotechnology programs. Molecular
control mechanisms for abiotic stress tolerance are
based on the activation and regulation of specific stress-
related genes. These genes are involved in the whole
sequence of stress responses, such as signaling, tran-
scriptional control, protection of membranes and pro-
teins, and free-radical and toxic-compound scavenging.
Recently, research into the molecular mechanisms of
stress responses has started to bear fruit and, in parallel,
genetic modification of stress tolerance has also shown
promising results that may ultimately apply to agricul-
turally and ecologically important plants. The present
review summarizes the recent advances in elucidating
stress-response mechanisms and their biotechnological
applications. Emphasis is placed on transgenic plants
that have been engineered based on different stress-
response mechanisms. The review examines the follow-
ing aspects: regulatory controls, metabolite engineering,
ion transport, antioxidants and detoxification, late
embryogenesis abundant (LEA) and heat-shock pro-
teins.
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Introduction

Abiotic stresses, such as drought, salinity, extreme
temperatures, chemical toxicity and oxidative stress are
serious threats to agriculture and result in the deterio-
ration of the environment. Abiotic stress is the primary
cause of crop loss worldwide, reducing average yields for
most major crop plants by more than 50% (Boyer 1982;
Bray et al. 2000). Drought and salinity are becoming
particularly widespread in many regions, and may cause
serious salinization of more than 50% of all arable lands
by the year 2050. Abiotic stress leads to a series of
morphological, physiological, biochemical and molecu-
lar changes that adversely affect plant growth and pro-
ductivity (Wang et al. 2001a). Drought, salinity, extreme
temperatures and oxidative stress are often intercon-
nected, and may induce similar cellular damage. For
example, drought and/or salinization are manifested
primarily as osmotic stress, resulting in the disruption of
homeostasis and ion distribution in the cell (Serrano
et al. 1999; Zhu 2001a). Oxidative stress, which fre-
quently accompanies high temperature, salinity, or
drought stress, may cause denaturation of functional
and structural proteins (Smirnoff 1998). As a conse-
quence, these diverse environmental stresses often acti-
vate similar cell signaling pathways (Shinozaki and
Yamaguchi-Shinozaki 2000; Knight and Knight 2001;
Zhu 2001b, 2002) and cellular responses, such as the
production of stress proteins, up-regulation of anti-oxi-
dants and accumulation of compatible solutes (Vierling
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Fig. 1 The complexity of the
plant response to abiotic stress.
Primary stresses, such as
drought, salinity, cold, heat and
chemical pollution are often
interconnected, and cause
cellular damage and secondary
stresses, such as osmotic and
oxidative stress. The initial
stress signals (e.g. osmotic and

Salinity

ionic effects, or temperature,
membrane fluidity changes)
trigger the downstream
signaling process and
transcription controls which
activate stress-responsive
mechanisms to re-establish
homeostasis and protect and
repair damaged proteins and
membranes. Inadequate
response at one or several steps
in the signaling and gene
activation may ultimately result
in irreversible changes of
cellular homeostasis and in the
destruction of functional and
structural proteins and
membranes, leading to cell
death
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and Kimpel 1992; Zhu et al. 1997; Cushman and
Bohnert 2000).

The complex plant response to abiotic stress, which
involves many genes and biochemical-molecular mech-
anisms, is schematically represented in Fig. 1. The
ongoing elucidation of the molecular control mecha-
nisms of abiotic stress tolerance, which may result in the
use of molecular tools for engineering more tolerant
plants, is based on the expression of specific stress-re-
lated genes. These genes include three major categories:
(1) those that are involved in signaling cascades and in
transcriptional control, such as MyC, MAP kinases and
SOS kinase (Shinozaki and Yamaguchi-Shinozaki 1997;
Munnik et al. 1999; Zhu 2001b), phospholipases
(Chapman 1998; Frank et al. 2000), and transcriptional
factors such as HSF, and the CBF/DREB and ABF/
ABAE families (Stochinger et al. 1997; Schoffl et al.
1998; Choi et al. 2000; Shinozaki and Yamaguchi-
Shinozaki 2000); (ii) those that function directly in the

protection of membranes and proteins, such as heat-
shock proteins (Hsps) and chaperones, late embryo-
genesis abundant (LEA) proteins (Vierling 1991; Ingram
and Bartels 1996; Tomashow 1998, 1999; Bray et al.
2000), osmoprotectants, and free-radical scavengers
(Bohnert and Sheveleva 1998); (iii) those that are in-
volved in water and ion uptake and transport such as
aquaporins and ion transporters (Maurel 1997; Serrano
et al. 1999; Tyerman et al. 1999; Zimmermann and
Sentenac 1999; Blumwald 2000). The readers can refer to
many excellent reviews on this topic (Vierling 1991; In-
gram and Bartels 1996; Bohnert and Sheveleva 1998;
Smirnoff 1998; Tomashow 1998, 1999; Serrano et al.
1999; Blumwald 2000; Bray et al. 2000; Cushman and
Bohnert 2000; Hasegawa et al. 2000; Shinozaki and
Yamaguchi-Shinozaki 1997, 2000; Serrano and Rodri-
guez-Navarro 2001; Zhu 2002).

To maintain growth and productivity, plants must
adapt to stress conditions and exercise specific tolerance



mechanisms. Plant modification for enhanced tolerance
is mostly based on the manipulation of genes that pro-
tect and maintain the function and structure of cellular
components. In contrast to most monogenic traits of
engineered resistance to pests and herbicides, the
genetically complex responses to abiotic stress condi-
tions are more difficult to control and engineer. Present
engineering strategies rely on the transfer of one or
several genes that are either involved in signaling and
regulatory pathways, or that encode enzymes present in
pathways leading to the synthesis of functional and
structural protectants, such as osmolytes and antioxi-
dants, or that encode stress-tolerance-conferring pro-
teins. The current efforts to improve plant stress
tolerance by gene transformation have resulted in
important achievements; however, the nature of the
genetically complex mechanisms of abiotic stress toler-
ance, and the potential detrimental side effects, make
this task extremely difficult.
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The primary objective of this review is to report re-
cent advances in the stress-response mechanisms and
their biotechnological applications in plants. Emphasis is
given to transgenic plants that were engineered for stress
tolerance, based on different mechanisms of stress re-
sponse. The following major mechanisms and aspects are
discussed: regulatory controls, osmolyte engineering, ion
transport, detoxification mechanisms and the role of
LEA and Hsps. The different transgenic plants that are
discussed in this review are summarized in Table 1.

Transcription factors and their significance
in plant stress tolerance

Plant stress responses are regulated by multiple signaling
pathways that activate gene transcription and its
downstream machinery. Plant genomes contain a large
number of transcription factors (TFs); for example,

Table 1 Mechanisms, genes and genetically modified plant species implicated in plant responses to abiotic stress

Mechanism Genes Species Reference

Transcription control ~ CBF1 Arabidopsis thaliana  Jaglo-Ottosen et al. 1998
DREBIA A. thaliana Kasuga et al. 1999
CBF3 A. thaliana Gilmour et al. 2000
CBFs Brassica napus Jaglo et al. 2001
CBF1 Lycopersicon Hsieh et al. 2002

esculentum

CBF4 A. thaliana Haake et al. 2002
AtMYC2 and AtMYB2 A. thaliana Abe et al. 2003
ABF3 or ABF4 A. thaliana Kang et al. 2002

HSF1 and HSF3

A. thaliana

HsfAl L. esculentum
spl7 Oryza sativa
Compatible solute
Proline P5CS Nicotiana tabacum
ProDH A. thaliana
Myo-inositol IMTI N. tabacum
Sorbitol stpdl N. tabacum
Antioxidants and CuZn-SOD N. tabacum
detoxification Mn-SOD or Fe-SOD Medicago sativa,
N. tabacum
GST and GPX N. tabacum
chyB A. thaliana
Aldose-aldehyde reductase  N. tabacum
Ton transport AtNHX1 A. thaliana
B. napus
L. esculentum
SOSI1 A. thaliana
HALI1 Cucurbita melo
AVP1 A. thaliana
Hsps and molecular Hspl7.7 Daucus carota
chaperones Hsp21 A. thaliana
AtHSP17.6A A. thaliana
DnaK1 N. tabacum
SP1 Populus tremula
LEA-type proteins CORI15a A. thaliana
HVAI 0. sativa
Triticum aestivum
WCS19 A. thaliana

JH Lee et al. 1995; Priandl et al. 1998

Mishra et al. 2002
Yamanouchi et al. 2002

Kishor et al. 1995; Konstantinova et al. 2002;

Hong et al. 2000
Nanjo et al. 1999
Sheveleva et al. 1997
Sheveleva et al. 1998

Gupta et al. 1993a, 1993b; Pitcher and Zilinskas 1996
McKersie et al. 1996, 1999, 2000; Van Camp et al. 1996

Roxas et al. 1997
Davison et al. 2002
Oberschall et al. 2000
Apse et al. 1999
Zhang et al. 2001
Zhang and Blumwald 2001
Shi et al. (2003)
Bordas et al. 1997
Rus et al. 2001
Gaxiola et al. 2001
Malik et al. 1999
Haérndahl et al. 1999
Sun et al. 2001
Sugino et al. 1999
Wang et al. 2003

Artus et al. 1996; Steponkus et al. 1998;

Jaglo-Ottosen et al. 1998
Xu et al. 1996

Sivamani et al. 2000
Ndong et al. 2002
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Arabidopsis dedicates about 5.9% of its genome coding
for more than 1,500 TFs (Riechmann et al. 2000). Most
of these TFs belong to a few large multigene families,
e.g. MYB, AP2/EREBP, bZIP and WRKY. Individual
members of the same family often respond differently to
various stress stimuli; on the other hand, some stress-
responsive genes may share the same TFs, as indicated
by the significant overlap of the gene-expression profiles
that are induced in response to different stresses (Bo-
hnert et al. 2001; Seki et al. 2001; Chen et al. 2002;
Fowler and Thomashow 2002; Kreps et al. 2002). Some
key examples are discussed below.

The dehydration-responsive transcription factors
(DREB) and C-repeat binding factors (CBF) bind to
DRE and CRT cis-acting elements that contain the same
motif (CCGAC). Members of the CBF/DREBI family,
such as CBF1, CBF2, and CBF3 (or DREBIB,
DREBIC, and DREBIA, respectively) are themselves
stress-inducible. DREB/CBF proteins are encoded by
AP2/EREBP multigene families and mediate the tran-
scription of several genes such as rd29A4, rdl7, cor6.6,
corlSa, erdl0, kinl, kin2 and others in response to cold
and water stress (Ingram and Bartels 1996; Stockinger
et al. 1997; Gilmour et al. 1998; Liu et al. 1998; Seki
et al. 2001; Thomashow et al. 2001).

Significant improvement of stress tolerance was
found upon overexpression of a single TF in engineered
Arabidopsis thaliana plants. Arabidopsis cold acclimation
is associated with the induction of COR (cold-regulated)
genes by the CRT/DRE cis-regulatory elements
(Thomashow 1998). Jaglo-Ottosen et al. (1998) showed
that increased expression of Arabidopsis CBF1 induces
the expression of the cold-regulated genes cor6.6, corlSa,
cor47, and cor78, and increased the freezing tolerance of
non-acclimated Arabidopsis plants. Arabidopsis trans-
formation with the DREB1A gene (Kasuga et al. 1999),
driven by either the strong constitutive promoter of the
cauliflower mosaic virus (35SCaMV) or by a DRE-
containing promoter from the dehydration-induced gene
(rd29A), resulted in a marked increase in tolerance to
freezing, water and salinity stress. Similar to the CBF1
transgene, constitutive expression of DREBIA tran-
scription factor resulted in increased expression of its
downstream targeted genes, such as rd29A4, rdl7, cor6.6,
corlsa, erdl0, and kinl. Overexpression of CBF3 in
Arabidopsis also increased freezing tolerance and, more
interestingly, resulted in multiple biochemical changes
associated with cold acclimation: elevated levels of
proline and total soluble sugars, including sucrose, raf-
finose, glucose, and fructose (Gilmour et al. 2000).
Plants overexpressing CBF3 also had elevated A'-pyrr-
oline-5-carboxylate synthetase (P5CS) transcript levels,
suggesting that the increase in proline levels had resul-
ted, in part, from increased expression of the key proline
biosynthetic enzyme P5CS.

Components of the Arabidopsis CBF/DREB cold-
response pathway were also found in Brassica napus
and other plant species (Jaglo et al. 2001). Constitutive
overexpression of the Arabidopsis CBF genes in

transgenic B. napus plants induced expression of or-
thologs of Arabidopsis CBF-targeted genes and in-
creased the freezing tolerance of both non-acclimated
and cold-acclimated plants. Recently, expression of
Arabidopsis CBF1 in tomato plants has been shown to
confer elevated tolerance to chilling and oxidative stress
(Hsieh et al. 2002). However, the expression of cor
genes was not induced, while reactive oxygen species
(ROS) scavenger genes, e.g. CATI, were activated.
Recently, a close CBF/DREBI homolog in Arabidopsis,
CBF4, was isolated (Haake et al. 2002). The expression
of CBF4 is rapidly induced during drought stress and
by abscisic aid (ABA) treatment, but not by cold,
thereby distinguishing it from CBF/DREBI transcrip-
tion factors. Overexpression of CBF4 under the con-
stitutive CaM V35S promoter resulted in the expression
of cold- and drought-induced genes under non-stress
conditions, and the transgenic Arabidopsis plants
showed more tolerance to freezing and drought con-
ditions (Haake et al. 2002).

ABA signaling plays a vital role in plant stress res-
ponses as evidenced by the fact that many of the
drought-inducible genes studied to date are also induced
by ABA. Two TF families bZIP and MYB, are involved
in ABA signaling and its gene activation. Many ABA-
inducible genes share the (C/T) ACGTGGC consensus,
cis-acting ABA-responsive element (ABRE) in their
promoter regions (Guiltinan et al. 1990; Mundy et al.
1990). Several ABRE-binding proteins, including rice
TRAB and Arabidopsis AREB/ABF and ABIS5, which
interact with ABRE and regulate gene expression, have
been isolated (Hobo et al. 1999; Choi et al. 2000; Fin-
kelstein and Lynch 2000; Lopez-Molina and Chua 2000;
Uno et al. 2000; Kang et al. 2002). Recently, Abe et al.
(2003) showed that the Arabidopsis MYB transcription
factor proteins AtMYC2 and AtMYB2 function as
transcriptional activators in ABA-inducible gene
expression, suggesting a novel regulatory system for
gene expression in response to ABA, other than the
ABRE-bZIP regulatory system.

Constitutive expression of ABF3 or ABF4 demon-
strated enhanced drought tolerance in Arabidopsis
plants, with altered expression of ABA/stress-responsive
genes, e.g. rd29B, rabl8, ABIl and ABI2 (Kang et al.
2002). Several ABA-associated phenotypes, such as
ABA hypersensitivity and sugar hypersensitivity, were
observed in transgenic plants. Moreover, salt hypersen-
sitivity was observed in ABF3- and ABF4-overexpress-
ing plants at the germination and young seedling stage,
indicating the possible participation of ABF3 and ABF4
in the salt response at these particular developmental
stages. Improved osmotic-stress tolerance in 35S:At-
MYC2/AtMYB2 transgenic plants, as judged by an
electrolyte-leakage test (Abe et al. 2003), is yet another
example of how plant engineering with transcriptional
activators of ABA signaling can provide a means of
improving plant stress tolerance.

Similar to osmotic stress, the heat-shock response is
primarily regulated at the transcriptional level.



Thermo-inducibility is attributed to conserved cis-reg-
ulatory promoter elements (HSEs) that are the binding
sites for the trams-active heat-shock factors (HSFs;
Schoffl et al. 1998). The HSEs share a common con-
sensus  sequence “nGAAnnTTCnnGAAn”. Plant
HSFs, which are further categorized into three classes,
A, B and C, appear to be a unique family containing a
number of members: 21 from Arabidopsis, more than
16 from tomato, and 15 from soybean (Nover et al.
2001). Hsps are chaperones, which function during
both normal cell growth and stress conditions; there-
fore it is not surprising that HSFs provide diverse
functions that differentially control the activation of
heat-shock genes (Morimoto 1998; Schoffl et al. 1998;
Mishra et al. 2002). It has been shown that overex-
pression of HSF1 and HSF3 (class A) leads to the
expression of several Asp genes conferring thermo-tol-
erance in transgenic plants (JH Lee et al. 1995; Prindl
et al. 1998). In tomato plants, overexpression of HsfAl
resulted in heat-stress tolerance, while HsfA1 antisense
plants and fruits were extremely sensitive to elevated
temperatures (Mishra et al. 2002). Analysis of the
transgenic plants disclosed that HsfAl has a unique
role as a master regulator for the synthesis of other
HSFs such as HSFs A2 and BI1 as well as Hsps. HSFs
may also play a role in controlling cell death. The rice
spl (spotted leaf) gene spl7 encodes a class-A HSF, and
the spl7 transgenic rice showed no lesions (spotted leaf)
or delay in development of lesions (Yamanouchi et al.
2002). The experiment suggested that sp/7 might par-
ticipate in controlling cell death that is caused by
environmental stresses such as high temperature.

These studies demonstrate the important role of TFs
in the acquisition of stress tolerance, which may ulti-
mately contribute to agricultural and environmental
practices. Although plant transformation with stress-
responsive TFs permits overexpression of downstream
stress-associated multiple genes, it may also activate
additional non-stress genes that adversely affect the
normal agronomic characteristics of a crop. One com-
mon negative effect of TF-modified plants is the growth
retardation in transgenic plants that constitutively ex-
press TFs (Kasuga et al. 1999; Hsieh et al. 2002; Kang
et al. 2002; Abe et al. 2003). For example, a positive
correlation was found between the levels of DREB1A
expression, the level of expression of the target gene
RD29A, and the degree to which plants growth is
stunted (Liu et al. 1998). These negative effects can be
partially prevented by the use of stress-inducible pro-
moters that control the expression of the TF (Kasuga
et al. 1999).

Applications of compatible-solute engineering

Compatible solutes, or osmolytes, accumulate in
organisms in response to osmotic stress. The primary
function of compatible solutes is to maintain cell turgor
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and thus the driving gradient for water uptake. Recent
studies indicate that compatible solutes can also act as
free-radical scavengers or chemical chaperones by di-
rectly stabilizing membranes and/or proteins (Lee et al.
1997; Hare et al. 1998; Bohnert and Shen 1999; McNeil
et al. 1999; Diamant et al. 2001). Compatible solutes fall
into three major groups: amino acids (e.g. proline),
quaternary amines (e.g. glycine betaine, dimethylsulfo-
niopropionate) and polyol/sugars (e.g. mannitol, treha-
lose). Overexpression of compatible solutes in transgenic
plants can result in improved stress tolerance.

Proline is synthesized from glutamate via glutamic-y-
semialdehyde (GSA) and A'-pyrroline-5-carboxylate
(P5C). P5C synthase (P5CS) catalyzes the conversion of
glutamate to P5C, followed by P5C reductase (PSCR),
which reduces P5C to proline. In the reverse reaction,
proline is metabolized to glutamate in a feed-back
manner, via P5C and GSA with the aid of proline
dehydrogenase (ProDH) followed by P5C dehydroge-
nase (PSCDH). Transgenic tobacco (Nicotiana tabacum)
overexpressing the pScs gene that encodes P5CS pro-
duced 10- to 18-fold more proline and exhibited better
performance under salt stress (Kishor et al. 1995).
Freezing tolerance was achieved by transforming to-
bacco with the same gene (pScs; Konstantinova et al.
2002). Because P5CS is the rate-limiting enzyme in
proline biosynthesis in plants, and is subject to feedback
inhibition by proline, removal of the feedback inhibition
can result in high level of proline accumulation (Hong
et al. 2000). Transgenic tobacco overexpressing the
mutated form of Vigna aconitifolia PSCS (PSCSF129A)
accumulated about 2-fold more proline than plants
expressing wild-type PSCS when the feedback inhibition
induced by proline was eliminated and this difference
was further increased in plants under salt stress. The
elevated proline also reduced free-radical levels in re-
sponse to osmotic stress and significantly improved the
ability of the transgenic seedlings to grow in a medium
containing up to 200 mM NaCl (Hong et al. 2000).

An alternative strategy for sustaining a high level of
proline during stress is to down-regulate proline catab-
olism. Proline dehydrogenase (ProDH) catalyzes the first
step of proline degradation. Repression of Arabidopsis
proline dehydrogenase (AtProDH) mRNA in antisense
transgenic plants resulted in the constitutive accumula-
tion of proline (Nanjo et al. 1999). AtProDH-antisense-
transgenic plants showed more tolerance to freezing
(=7 °C) and to NaCl (600 mM) than wild-type and
vector-transformed plants.

Betaines are quaternary ammonium compounds, i.e.
amino acid derivatives in which the nitrogen atom is
fully methylated. In plants, glycine betaine, a represen-
tative member of this group of osmolytes, is synthesized
in the chloroplast from choline by a two-step process.
The first step (choline to betaine aldehyde) is mediated
by choline monooxygenase (CMO), which can be in-
duced by drought and salinity (Russell et al. 1998). The
second step (betaine aldehyde to glycine betaine) is
catalyzed by betaine aldehyde dehydrogenase (BADH),



6

an NAD-dependent dehydrogenase. Many important
crops, such as rice, potato and tomato, do not accu-
mulate glycine betaine and are therefore potential can-
didates for the engineering of betaine biosynthesis
(McCue and Hanson 1990). Genetic engineering for
glycine betaine biosynthesis in non-accumulating plants
has been extensively reported (Lilius et al. 1996; Hayashi
et al. 1997; Alia et al. 1998a, 1998b; Sakamoto et al.
1998, 2000; also see review of Sakamoto and Murata
2002, and references therein). Transgenic plants
expressing bacterial choline-oxidizing enzymes displayed
increased tolerance to various stresses such as high salt
concentrations and extreme temperatures (reviewed in
Sakamoto and Murata 2001). The main constraint to
glycine betaine accumulation in transgenic plants ap-
pears to be the endogenous choline supply (Nuccio et al.
1998). Therefore, up-regulation of the de novo synthesis
of choline to increase glycine betaine synthesis is also
imported in non-accumulators, which express foreign
choline-oxidizing enzymes (Nuccio et al. 1998; Huang
et al. 2000). In addition, correct subcellular targeting of
the inserted gene also has a significant impact on its
expression and expected functions (Sakamoto et al.
1998; Konstantinova et al. 2002).

A number of “sugar alcohols” (mannitol, trehalose,
myo-inositol and sorbitol) have been targeted for the
engineering of compatible-solute overproduction. Tar-
czynski et al. (1993) introduced a bacterial gene that
encodes mannitol 1-phosphate dehydrogenase into to-
bacco plants, resulting in mannitol accumulation and
enhanced tolerance to salinity. In addition, transgenic
tobacco plants carrying a cDNA encoding myo-inositol
O-methyltransferase (IMT1) accumulated bp-ononitol
and, as a result, acquired enhanced photosynthesis
protection and increased recovery under drought and
salt stress (Sheveleva et al. 1997). When engineering
these ’sugar polyols’ in plants, pleiotropic effects some-
times occurred. Abnormal phenotypes associated with
sorbitol accumulation were also found in transgenic
tobacco transformed with stpdl, a cDNA encoding
sorbitol-6-phosphate dehydrogenase from apple (Shev-
eleva et al. 1998). Plants with low levels of sorbitol (less
than 2-3 pmol g~' fresh weight) developed normally,
but necrotic lesions and reduced shoot and root growth,
as well as low fertility, were associated with an excessive
sorbitol accumulation. The adverse effects observed in
these sorbitol overproducers may have resulted from a
disturbance in carbohydrate transport and allocation
(Sheveleva et al. 1998).

Recently, Garg et al. (2002) showed rice tolerance to
multiple abiotic stresses by engineering trehalose over-
expression without the negative pleiotropic effects ob-
served in some other studies. The modest increase in
trehalose levels in transgenic lines, using either the
tissue-specific or stress-dependent promoters, resulted
in a higher capacity for photosynthesis and a con-
comitant decrease in the photo-oxidative damage dur-
ing stress. Although the elevated trehalose levels do not
seem to account for osmoprotection activity, the

findings demonstrate the feasibility of engineering rice
for increased tolerance and enhanced productivity
through tissue-specific or stress-dependent overproduc-
tion of trehalose.

Genetic manipulations of compatible solutes do not
always lead to a significant accumulation of the com-
pound (except some cases of proline over-production;
Chen and Murata 2002), suggesting that the function of
compatible solutes is not restricted to osmotic adjust-
ment, only. Accumulation of compatible solutes may
also protect plants against damage by scavenging of
reactive oxygen species, and by their chaperone-like
activities in maintaining protein structures and func-
tions. Engineered overproduction of these compatible
solutes provides an opportunity to generate more tol-
erant plants. Incorrect gene expression of compatible
solutes often causes pleiotropic effects (e.g. necrosis and
growth retardation) due to disturbance in endogenous
pathways of primary metabolisms. For agricultural
practices, over-synthesis of compatible solutes should
not account for the primary metabolic costs. Moreover,
to minimize the pleiotropic effects, the over-production
of compatible solutes should be stress-inducible and/or
tissue specific (Garg et al. 2002).

Antioxidants and detoxification genes

Salt, drought, heat and oxidative stress are accompanied
by the formation of ROS such as O,, H,O,, and OH™
(Price et al. 1989; Moran et al. 1994, Mittler 2002),
which damage membranes and macromolecules. Plants
have developed several antioxidation strategies to scav-
enge these toxic compounds. Enhancement of antioxi-
dant defense in plants can thus increase tolerance to
different stress factors. Antioxidants (ROS scavengers)
include enzymes such as catalase, superoxide dismutase
(SOD), ascorbate peroxidase (APX) and glutathione
reductase, as well as non-enzyme molecules such as
ascorbate, glutathione, carotenoids, and anthocyanins.
Additional compounds, such as osmolytes, proteins (e.g.
peroxiredoxin) and amphiphilic molecules (e.g. tocoph-
erol), can also function as ROS scavengers (Bowler et al.
1992; Noctor and Foyer 1998).

Transgenic tobacco plants overexpressing chloro-
plastic Cu/Zn-SOD showed increased resistance to oxi-
dative stress caused by high light and low temperatures
(Gupta et al. 1993a, 1993b). Transgenic alfalfa plants
(Medicago sativa) expressing Mn-SOD evinced reduced
injury from water-deficit stress, as determined by chlo-
rophyll fluorescence, electrolyte leakage and re-growth
(McKersie et al. 1996). In another study, transgenic
alfalfa plants expressing either Mn-SOD or Fe-SOD had
increased winter survival rates and yields (McKersie
et al. 1999, 2000). However, this was not associated with
protection against primary injury caused by freezing,
and the Fe-SOD transgenic alfalfa did not show greater
tolerance to oxidative stress (McKersie et al. 2000). As



proposed by the authors, Fe-SOD overexpression may
reduce secondary injury symptoms and thereby enhance
recovery from the stress experienced during the winter.
Mn-SOD-expressing transgenic tobacco showed a 2- to
3-fold reduction in leaf injury compared to wild-type
plants following exposure to ozone (Van Camp et al.
1996). In addition, overexpression of Cu/Zn-SOD in the
cytosol of transgenic tobacco plants was found to confer
partial resistance to ozone-induced foliar necrosis
(Pitcher and Zilinskas 1996). Transgenic tobacco seed-
lings, overexpressing cDNA which encodes an enzyme
with both glutathione S-transferase (GST) and gluta-
thione peroxidase (GPX) activity, grew significantly
faster than control seedlings following exposure to
chilling or salt stress (Roxas et al. 1997).

In Arabidopsis, overexpression of the chyB gene that
encodes f-carotene hydroxylase (an enzyme active in the
zeaxanthin biosynthetic pathway) resulted in a 2-fold
increase in the pool of the xanthophyll cycle (Davison
et al. 2002). These transgenic plants showed greater
tolerance to high light and increased temperatures, and
it was suggested that the stress protection was most
likely due to the action of zeaxanthin in preventing
oxidative damage to membranes.

Transgenic tobacco plants expressing alfalfa aldose-
aldehyde reductase, a stress-activated enzyme, showed
reduced damage when exposed to oxidative stress and
increased tolerance to heavy metals, salt and dehydra-
tion stress (Oberschall et al. 2000). This novel enzyme is
an NADPH-dependent aldose/aldehyde reductase,
which is believed to be involved in detoxification by
reducing the level of reactive aldehydes.

Targeting detoxification pathways is an appropriate
approach for obtaining plants with multiple stress-tol-
erance traits (Bartels 2001). It is expected that with our
increasing understanding of those pathways, it will be-
come possible to produce transgenic plants that can be
sustained under true field conditions with multiple
environmental stresses.

Engineering for ion transport

Osmotic stress, ion toxicity and high salt content in the
soil and the irrigation water, especially Na™ and CI-,
significantly impair plant growth. lon transporters
selectively transport ions and maintain them at physio-
logically relevant concentrations while Na™/H™" anti-
porters also play a crucial role in maintaining cellular
ion homeostasis, thus permitting plant survival and
growth under saline conditions. The Na"/H" anti-
porters catalyze the exchange of Na™ for H' across
membranes and have a variety of functions, such as
regulating cytoplasmic pH, sodium levels and cell turgor
(Serrano et al. 1999). Plant Na™/H™ antiporters have
been isolated from Arabidopsis (AtNHX1, SOS1; Gaxi-
ola et al. 1999; Shi et al. 2000) and rice plants (Fukuda
et al. 1999) and from the halophytic plants Atriplex
gmelini (Hamada et al. 2001) and Mesembryanthemum

7

crystallinum (Chauhan et al. 2000). Overexpression of
the vacuolar Na™ /H™ antiporter AtNHXI in Arabid-
opsis plants (Apse et al. 1999) promoted growth and
development in potting medium irrigated with up to
200 mM sodium chloride. This salinity tolerance was
positively correlated with elevated levels of AtNHXI
transcript, and with protein and vacuolar Na*/H™" an-
tiporter activity. Transgenic Brassica napus plants
overexpressing AtNHX1 were able to grow, flower and
produce seeds, in the presence of 200 mM sodium
chloride, even though they accumulated sodium at a rate
of up to 6% dry weight. Moreover, their seed yields and
seed oil quality were not altered by the high soil salinity
(Zhang et al. 2001). Similarly, transgenic tomato plants
overexpressing this gene were able to grow, flower and
produce fruit in the presence of 200 mM sodium chlo-
ride (Zhang and Blumwald 2001). Although the tomato
leaves accumulated high sodium concentrations, the
fruits displayed very low sodium content, demonstrating
the potential to maintain fruit yield and quality at high
salt levels.

The A. thaliana plasma membrane Na™/H™ anti-
porter, encoded by the SOS1 gene, was suggested to be
essential for salt tolerance (Shi et al. 2002), and recently
Shi et al. (2003) reported that overexpression of SOS1
improves salt tolerance in transgenic Arabidopsis. The
authors also showed that the increased salt tolerance
was correlated with reduced Na ™ accumulation.

Saccharomyces cerevisiae cation transport systems,
such as HAL1 and HAL3, are involved in the regulation
of K" and Na " transport, respectively. Shoots from
transgenic melon plants expressing the HALI1 gene
showed some level of salt tolerance in vitro (Bordas et al.
1997), and transgenic tomato lines expressing the HALI1
gene were found to be more salt-tolerant than the wild-
type plants, as judged by both callus and plant growth in
short-term experiments (Gisbert et al. 2000). Such
transgenic lines also demonstrated better fruit yield un-
der salt stress (Rus et al. 2001).

In plants, protons are used as coupling ions for ion
transport systems, and the proton gradient, generated by
proton pumps found in the cell membrane, is the driving
force for nutrient uptake (Serrano et al. 1999). Three
distinct proton pumps are responsible for the generation
of the proton electrochemical gradients (Sze et al. 1999):
(1) the plasma membrane H-ATPase pump (PM H-AT-
Pase) which extrudes H" from the cell and thus gener-
ates a proton motive force; (ii)) the vacuolar-type
H-ATPase pump (V-ATPase); (iii)) the vacuolar
H-pumping pyrophosphatase pump (H-PPase). The
latter two acidify the vacuolar lumen and other endo-
membrane compartments. Arabidopsis plants were
transformed with a vacuolar H'-PPase pump that is
encoded by a single gene, AVPI (Gaxiola et al. 2001),
which can generate an H™ gradient across the vacuolar
membrane, similar in magnitude to that of the multi-
subunit vacuolar H"-ATPase pump. These transgenic
plants expressed higher levels of AVP1 and were more
resistant to salt and drought than wild-type plants. It
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was also found that the resistant phenotypes had an
increased vacuolar proton gradient, resulting in
increased solute accumulation and water retention.

Maintenance and re-establishment of cellular ion
homeostasis during stress and/or following stress is
extremely important for plant survival and growth,
especially for prevention, compartmentation or exclu-
sion of sodium ions under salinity stress. Overexpres-
sion of the genes involved in cellular ion homeostasis
have already resulted in significant improvement;
however more careful utilization of specific genes,
including targeting to different types of cells and
organelles, should result in even greater salt-stress tol-
erance under true field conditions.

The role of Hsps and LEA-type proteins

To cope with environmental stress, plants activate a
large set of genes leading to the accumulation of specific
stress-associated proteins (Vierling 1991; Ingram and
Bartels 1996; Bohnert and Sheveleva 1998; Thomashow
1999; Hoekstra et al. 2001). Heat-shock proteins (Hsps)
and late embryogenesis abundant (LEA)-type proteins
are two major types of stress-induced proteins that
accumulate upon water, salinity, and extreme tempera-
ture stress. They have been shown to play a role in cel-
lular protection during the stress (Vierling and Kimpel
1992; Boston et al. 1996; Close 1996; Ingram and Bartels
1996; Waters et al. 1996; Thomashow 1998).

Hsps and molecular chaperones

Dysfunction of enzymes and proteins usually accompa-
nies abiotic stress. Therefore, maintaining proteins in
their functional conformations and preventing aggrega-
tion of non-native proteins are particularly important
for cell survival under stress. Many stress-responsive
proteins, especially Hsps, have been shown to act as
molecular chaperones, which are responsible for protein
synthesis, targeting, maturation and degradation in a
broad array of normal cellular processes. Furthermore,
molecular chaperones function in the stabilization of
proteins and membranes, and in assisting protein
refolding under stress conditions (Vierling 1991; Hend-
rick and Hartl 1993; Boston et al. 1996; Hartl 1996;
Waters et al. 1996; Torok et al. 2001).

Among five conserved families of Hsps (Hspl00,
Hsp90, Hsp70, Hsp60 and sHsp), the small heat-shock
proteins (sHsps) are found to be most prevalent in
plants. sHsps are Hsps that vary in size from 12 to
40 kDa (Vierling 1991). Various studies have shown that
plant sHsps are not only expressed in response to heat
shock but also under water, salt, and oxidative stress,
and at low temperature (Almoguera et al. 1993; Alamillo
et al. 1995; Sabehat et al. 1998; Hirndahl et al. 1999;
Hamilton and Heckathorn 2001). In the resurrection
plant Craterostigma plantagineum, sHsp-like proteins

are expressed constitutively in vegetative tissues (Ala-
millo et al. 1995). Two tomato sHsps, tom66 and
toml11, were induced by low temperature in pre-heated
fruits (Sabehat et al. 1998). In another study, Hsp21 was
found to be involved in oxidative stress (Hdrndahl et al.
1999). Recently, Hamilton and Heckathorn (2001) sug-
gested that sHsps might act as antioxidants in protecting
Complex-I electron transport in mitochondria during
NaCl stress. Moreover, At-HSP17.6A expression was
induced by heat and osmotic stress as well as during seed
development (Sun et al. 2001). In addition, sHsps are
involved in many developmental processes, such as em-
bryo development, seed germination, somatic embryo-
genesis, pollen development, and fruit maturation
(Waters et al. 1996).

Plant sHsps show less sequence similarity than Hsps
of other organisms. The sequence similarity spans
approximately 100 amino acids proximal to the car-
boxyl-terminal, and exhibits pronounced homology with
the a-crystallin family (Waters et al. 1996). Plant sHsps,
like other sHsps and a-crystallins, tend to form large
oligomeric complexes (Chen et al. 1994; GJ Lee et al.
1995; Collada et al. 1997; Suzuki et al. 1998). The major
chaperone activity of sHsps is to bind and hold dena-
tured substrates in a folding-competent state for sub-
sequent refolding by a chaperone network (Horwitz
1992; Ehrnsperger et al. 1997; Lee et al. 1997; Veinger
et al. 1998; Haslbeck et al. 1999; Ding and Candido
2000; Studer and Narberhaus 2000). However, some
members of the plant sHsps can also stabilize or reac-
tivate inactivated enzymes (GJ Lee et al. 1995; Hook
and Harding 1998; Muchowski and Clark 1998; Hasl-
beck et al. 1999; Smykal et al. 2000; Marini et al. 2000;
Sun et al. 2001).

sHsps, as well as other Hsps, are believed to play an
important role in plant stress tolerance. Carrot trans-
genic cells and regenerated plants, which constitutively
expressed the carrot Hspl7.7 gene, showed more ther-
motolerance than the vector controls (Malik et al. 1999).
In contrast, heat-inducible Hsp17.7 antisense lines were
less thermotolerant than the vector controls. Under high
light conditions, transgenic Arabidopsis that constitu-
tively expressed a chloroplast Hsp21 were more resistant
to heat stress than the wild-type plants (Hdrndahl et al.
1999). The results lead us to suggest that Hsps overpro-
duction may also protect plants from oxidative stress.
Recently, Sun et al. (2001) demonstrated that the
expression of Arabidopsis AtHSP17.6A is regulated by
heat shock and osmotic stress, and is induced during seed
maturation. Overexpression of AtHSP17.6A in A. thali-
ana conferred higher osmotolerance; however, the AtH-
SP17.6A transgene failed to increase heat tolerance.

DnaK1, a member of Hsp70 from the halotolerant
Cyanobacterium aphanothece, was overexpressed in the
cytosol of transgenic tobacco plants and was found to
improve their salt tolerance (Sugino et al. 1999). Under
salt stress, the CO, fixation rate decreased to 40% in the
control plants while its activity in the transgenic plants
was approximately 85%. In addition, leaf sodium



concentrations were significantly increased in control
plants but those of the transgenic plants remained at
levels similar to the non-stressed plants.

The LEA-type proteins

LEA-type proteins have been found in a wide range of
plant species in response to water deficit resulting from
desiccation, cold and osmotic stress. LEA-type proteins
fall into a number of families, with diverse structures
and functions (Close 1996; Ingram and Bartels 1996;
Thomashow 1998). Predictions of secondary structures
suggest that most LEA proteins exist as random coiled
a-helices (Bray et al. 2000). It was therefore proposed
that most LEA and dehydrin proteins exist as largely
unfolded structures in their native state, although a few
members exist as dimers or tetramers (Ceccardi et al.
1994; Kazuoka and Oeda 1994).

Hydrophilicity is a common characteristic of LEA-
type and other osmotic stress-responsive proteins. LEA
proteins have been grouped together with other osmotic
stress-induced proteins from Saccharomyces cerevisiae
and Escherichia coli into a class of proteins termed hy-
drophilins, based on criteria of high hydrophilicity index
(>1.0) and glycine content (> 6%; Garay-Arroyo et al.
2000). Heat stability is another notable feature of LEA
proteins, i.e. they do not coagulate upon boiling (Close
et al. 1989; Ceccardi et al. 1994; Houde et al. 1995;
Thomashow 1998, 1999). Another common character-
istic of LEA-type proteins is that, in most cases, their
related gene expression is transcriptionally regulated and
responsive to ABA (Mundy and Chua 1988; Skriver and
Mundy 1990; Leung and Giraudat 1998).

The functions of LEA-type proteins are largely un-
known. Nevertheless, their considerable synthesis during
the late stage of embryogenesis, their induction by stress
and their structural characteristics (hydrophilicity, ran-
dom coils and repeating motifs) permits the prediction
of some of their functions. It has been suggested that
LEA-type proteins act as water-binding molecules, in
ion sequestration and in macromolecule and membrane
stabilization (i.e. chaperone-like activity; Dure 1993a,
1993b; Close 1996; Ingram and Bartels 1996; Thoma-
show 1998, 1999). CORSS, a group-II LEA protein, was
shown to be involved in cryoprotection of freezing-sen-
sitive enzymes (Kazuoka and Oeda 1994). Moreover, it
was found that COR15am, the mature COR15a poly-
peptide, acts directly as a cryoprotective protein by
inhibiting the formation of hexagonal II phase lipids, a
major type of freeze-induced membrane lesion in non-
acclimated plants (Steponkus et al. 1998).

Overexpression of COR15a, which was targeted to
the chloroplasts, increased freezing tolerance of chlo-
roplasts in vivo, and of protoplasts in vitro (Artus et al.
1996). This increase most likely resulted from the
membrane-stabilizing effect of COR15a (Artus et al.
1996; Steponkus et al. 1998). However, the protective
effect of COR15a was insignificant for the survival of
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whole plants during freezing (Jaglo-Ottosen et al. 1998).
Xu et al. (1996) reported that the expression of HVAI,
an LEA III family protein in barley, confers tolerance to
water deficiency and salt stress in transgenic rice plants.
Moreover, constitutive expression of the same protein in
transgenic wheat plants improved biomass productivity
and water-use efficiency under water-deficit conditions
(Sivamani et al. 2000). More recently, Ndong et al.
(2002) reported that constitutive expression of a wheat
chloroplast LEA-like protein (WCS19) in Arabidopsis
resulted in a significant increase in freezing tolerance.
Overexpression of a single LEA-type protein is not
always sufficient to confer plant stress tolerance. Trans-
genic tobacco plants that had been transformed with three
Craterostigma plantagineum cDNAs, pcC6-19 (homolo-
gous with rice rabl6), pcC3-06 (homologous with
lea D29) and pcC27-45 (homologous with lea 14),
expressed high levels of the encoded proteins, but this
increase did not result in drought tolerance (Iturriaga et al.
1992). In contrast, multi-expression of LEA-type proteins
activated by their common transcription factors was
found to correlate with stress tolerance in transgenic
plants (Jaglo-Ottosen et al. 1998; Kasuga et al. 1999; Jaglo
et al. 2001). This suggested that the LEA-type proteins
might function synergistically with other members.

Perspective

Complex traits of abiotic stress phenomena in plants
make genetic modification for efficient stress tolerance
difficult to achieve. However, the modification of a sin-
gle trait (e.g. TFs, antiporters, and others) resulted in
several cases in significant improvements in stress
tolerance, as discussed earlier.

In addition to TFs, the modulation of upstream sig-
naling regulators such as rice calcium-dependent protein
kinase (OsCDPK) or Arabidopsis glycogen synthase
kinase (AtGSK1), can also be a promising method for
improving stress tolerance in plants (Piao et al. 2001;
Saijo et al. 2000). However, little is known about the
molecular mechanisms underlying these signaling com-
ponents. Moreover, alteration of further upstream
molecules in the pathway often activates a much wider
network of genes, other than stress-specific ones. Such
’overactivation’ may have deleterious effects on total
plant performance, eventually becoming useless for
agricultural practices.

The discovery and use of new stress-tolerance-asso-
ciated genes, as well as heterologous genes, to confer
plant stress tolerance (including those unique to
extreme-growth-environment organisms e.g. halophytes,
thermophilic organisms), has been the subject of ongo-
ing efforts to obtain tolerant plants. Recently, we re-
ported on a stress-responsive gene, spl, which is a
representative member of a novel protein family. SP1 is
a homo-oligomeric protein that possesses exceptional
stability under a variety of harsh conditions, such
as boiling, proteolysis, detergents and high-salt
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denaturation. Biochemical analysis demonstrated that
SP1 functions as a molecular chaperone in protecting
and repairing different heat-labile enzymes (Wang et al.
2001b, 2002; Wang et al. unpublished data). Preliminary
results showed that elevated expression of SP1 is corre-
lated to salt-stress tolerance (Wang et al. 2003; Barak
2003). Like many newly discovered genes, SP1 may serve
as a candidate for modifying plant stress tolerance. A
further understanding of the biochemical and molecular
mechanisms underlying stress should be achieved with
the advent of functional genomics, transcriptomics and
proteomics. Many heterologous genes, such as the bac-
terial mt[D gene producing mannitol, bacterial choline-
oxidizing enzyme and yeast HAL genes (Tarczynski
et al. 1993; Lilius et al. 1996; Bordas et al. 1997) have
been used successfully in genetically modified plants.
Recently, transgenic tobacco transformed with the ani-
mal cell death suppressors Bcl-xL and Ced-9 showed
enhanced resistance to UV-B, paraquat, salt, cold and
wounding stress (Mitsuhara et al. 1999; Qiao et al.
2002). The utility of foreign genes in modifying plants
opens a new avenue with a wide range of gene resources.
Nevertheless, the availability of many diverse metabo-
lites in plants, the different post-transcriptional or
translational modifications of selected foreign genes, as
well as human health and environmental considerations,
should be taken into account before foreign genes are
designed for expression in plants.

While adaptation to stress under natural conditions
has some ecological advantages, the metabolic and en-
ergy costs may sometimes mask and limit its benefit to
agriculture and result in yield penalty. Therefore, the
improvement of abiotic stress tolerance of agricultural
plants can only be achieved, practically, by combining
traditional and molecular breeding (Kasuga et al. 1999;
Dunwell 2000; Wang et al. 2001a). Thus, a comprehen-
sive breeding strategy for abiotic stress tolerance should
include the following steps and approaches: (i) conven-
tional breeding and germplasm selection, especially of
wild relevant species; (ii) elucidation of the specific
molecular control mechanisms in tolerant and sensitive
genotypes; (iii) biotechnology-oriented improvement of
selection and breeding procedures through functional
genomics analysis, use of molecular probes and markers
for selection among natural and bred populations, and
transformation with specific genes; and (iv) improvement
and adaptation of current agricultural practices.

An ideal genetically modified crop should possess a
highly regulated stress-response capability that does not
affect crop performance when stress is absent. In this
respect, conventional breeding and selection techniques
will continue to make a contribution (Wang et al.
2001a). While certain transgenic crops have already been
moved from the laboratory, only a few stress-resistant
transgenic crops have been evaluated in field trials under
real stress conditions (Dunwell 2000). In addition, most
of the genetically modified stress-tolerant plants gener-
ated to date are non-agronomic plants. When facing
the deleterious effects of drought and salinity, it is

imperative that more crops, which are genetically resis-
tant to abiotic stress, be designed, tested, and eventually
released for application as new commercial varieties.
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