C₄ photosynthesis in terrestrial plants does not require Kranz anatomy

Rowan F. Sage

C₄ photosynthesis in terrestrial plants was thought to require Kranz anatomy because the cell wall between mesophyll and bundle sheath cells restricts leakage of CO₂. Recent work with the central Asian chenopods Borszczowia aralocaspica and Bienertia cycloptera shows that C₄ photosynthesis functions efficiently in individual cells containing both the C₄ and C₃ cycles. These discoveries provide new inspiration for efforts to convert C₃ crops into C₄ plants because the anatomical changes required for C₄ photosynthesis might be less stringent than previously thought.

Published online: 31 May 2002

C₄ photosynthesis is the major carbon-concentrating mechanism used by land plants to compensate for limitations associated with low atmospheric CO₂ [1]. C₄ plants concentrate CO₂ by first carboxylating phosphoenolpyruvate (PEP) in an outer layer of photosynthetic mesophyll cells (termed the photosynthetic carbon assimilation (PCA) cells; Fig. 1). The resulting four-carbon acids (C₄ acids) diffuse into the bundle sheath layer of cells where ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the photosynthetic carbon reduction (PCR) reactions are localized. Together, the two cell layers confer a wreath-like appearance upon the leaf anatomy, which is termed Kranz anatomy [2]. In the PCR cells, the C₄ acids are decarboxylated to produce CO₂ and a three-carbon organic acid. The CO₂ is released into the chloroplasts where it is phosphorylated by pyruvate, phosphate dikinase (PPDK) to form PEP, which is then converted to another C₄ acid (malate or aspartate). The C₄ acid diffuses via plasmodesmata to the mesophyll chloroplasts where it is phosphorylated by pyruvate, phosphate dikinase (PPDK) to produce PEP, thus completing the C₄ cycle. Rubisco is localized in the bundle sheath cells, where it carboxylates CO₂ and a three-carbon organic acid.

Significance of Kranz anatomy

An essential feature of any carbon-concentrating mechanism is the ability to restrict gas diffusion out of the high CO₂ compartment. In aquatic algae and some aquatic plants, carbon-concentrating mechanisms occur in single cells, but leakage is less of a concern because the surrounding aqueous matrix restricts diffusion out of the cell. Most algae concentrate inorganic carbon [7]; however, some aquatic angiosperms (Hydrilla verticillata and Egeria densa) and diatoms (Thalassiosira weissflogii) are reported to operate a complete C₄ photosynthetic cycle in individual photosynthetic cells [8–10]. In contrast to the situation in aquatic habitats, there is no surrounding water to restrict efflux of concentrated CO₂ in terrestrial plants. Thus, it was thought that a modified wall separating PCA and PCR cells was essential for the efficient function of C₄ photosynthesis in terrestrial plants. In particular, the wall is highly resistant to CO₂ loss while allowing rapid metabolite diffusion between PCA and PCR cells via an extensive network of plasmodesmata [2,11]. Given these considerations, and

Fig. 1. C₄ photosynthesis. In the photosynthetic carbon assimilation (PCA) tissue (also termed mesophyll tissue), the carboxylation of phosphoenolpyruvate (PEP) by PEP carboxylase (PEPCase) occurs to form oxaloacetic acid (OAA), which is then converted to another C₄ acid (malate or aspartate). The C₄ acid diffuses via plasmodesmata to the bundle sheath tissue where Rubisco and the photosynthetic carbon reduction (PCR) cycle is located. A decarboxylase enzyme (DC) decarboxylates the C₄ acid in the bundle sheath cells and the CO₂ concentration rises to a partial pressure (pCO₂) that is ~30 times that in mesophyll cells. The CO₂ is released into the chloroplasts where it is phosphorylated by pyruvate, phosphate dikinase (PPDK) to produce PEP, which carboxylates CO₂ and a three-carbon organic acid.
that every terrestrial C₄ species previously examined has some form of Kranz anatomy, the discovery of Kranz-less, or single-cell C₄ photosynthesis in terrestrial plants is a surprise.

Single-cell C₄ photosynthesis in terrestrial plants
Single-cell C₄ photosynthesis in a terrestrial setting was first detected in *B. aralocaspica*, a semi-succulent member of the Chenopodiaceae (subfamily Salsoloideae, tribe Suaedeae) from saline deserts of central Asia [4,12]. Ecologically, *B. aralocaspica* is an extreme halophyte which create a long diffusive pathway for CO₂ efflux. In addition to the structural adjustment, the biochemical allocation of PCA and PCR enzymes is shifted in a manner that appears to reduce leakage. In *B. aralocaspica*, Rubisco activity relative to PPDK activity is double that observed in a related C₄ species, *Salsola laricina*. Furthermore, the ratio of PEPCase to Rubisco activity in *S. laricina* was near 18, whereas it is ~6 in *B. aralocaspica*. One might think that this ratio should be higher in *B. aralocaspica* given the need for PEPCase to recover CO₂ leaking out of the cell interior. Interestingly, *B. aralocaspica* had low activities of decarboxylating enzymes. The total activity of NAD-malic enzyme was 25% of that observed in *S. laricina* [4].

The photosynthetic cells of *B. aralocaspica* are modified, segregating PCA and PCR functions in a similar way to that found in Kranz tissue [4]. Instead of occurring in distinct cells, PCA and PCR metabolism occur at opposite ends of the same elongated cell (Fig. 2a). PEP regeneration occurs in chloroplasts located at the distal end of the cell away from the vascular bundles, whereas Rubisco and PCR functions are localized at the proximal end of the cell near the vascular bundles. In the leaf, photosynthetic cells are radially arranged around a central cylinder composed of enlarged water storage cells and numerous vascular bundles. The proximal ends of the photosynthetic cells are tightly packed with no obvious exposure to the intercellular air spaces, whereas the distal ends are directly exposed. PEP carboxylase (PEPCase) is not localized at the outer periphery of the cells but is found throughout the cytoplasm. This indicates that segregation of PCA and PCR metabolism does not involve the compartmentation of PEPCase, but instead is accomplished by the localization of PPDK (pyruvate, phosphate dikinase), Rubisco and the decarboxylating enzymes.

Carbon isotope values of *B. aralocaspica* are well within the range exhibited by C₄ plants [4,12], showing that CO₂ leakage is low. Leakage of CO₂ is minimized by the radial arrangement of the elongated photosynthetic cells, which create a long diffusive pathway for CO₂ efflux. In addition to the structural adjustment, the biochemical allocation of PCA and PCR enzymes is shifted in a manner that appears to reduce leakage. In *B. aralocaspica*, Rubisco activity relative to PPDK activity is double that observed in a related C₄ species, *Salsola laricina*. Furthermore, the ratio of PEPCase to Rubisco activity in *S. laricina* was near 18, whereas it is ~6 in *B. aralocaspica*. One might think that this ratio should be higher in *B. aralocaspica* given the need for PEPCase to recover CO₂ leaking out of the cell interior. Interestingly, *B. aralocaspica* had low activities of decarboxylating enzymes. The total activity of NAD-malic enzyme was 25% of that observed in *S. laricina* [4].

The single-celled C₄ system of *B. aralocaspica* appears to have shifted...
the allocation of PCR and PCA enzymes so that the Rubisco CO₂ sink in the proximal region of the cell is enhanced relative to the C₄ cycle activity. As a result, proportionally more of the CO₂ that is pumped in can be immediately fixed before leaking out. In addition, CO₂ levels around Rubisco might be lower than in most C₄ species, therefore the concentration gradient driving CO₂ leakage would be reduced. Consistently, B. aralocaspica exhibited a higher CO₂ saturation point than S. laricina. The initial slope of the photosynthetic CO₂-response curve, which reflects the CO₂ pump strength, is also reduced in B. aralocaspica relative to that observed in S. laricina [4].

The discovery of single-celled C₄ photosynthesis in B. aralocaspica led to investigations of the related species Bienertia cycloptera (tribe Suaedeae), which also grows in extreme saline habitats in central Asia [5,6]. Bi. cycloptera is an oddity because it shows a C₃ isotopic signature and yet was identified as C₄ in an earlier biochemical study [5,13]. Bi. cycloptera is one of the most interesting C₄ species studied to date. It operates a single-celled C₄ pathway using a novel cellular arrangement that is markedly different from B. aralocaspica or any other C₄ species (Fig. 2b) [5,6]. Instead of the elongated Kranz-like separation of PCA and PCR functions, as occurs in Borszczowia, the cytoplasm of Bi. cycloptera is divided into a region at the cell periphery, where PCA functions are localized, and into a region in the center of the cell, where PCR functions are localized (Fig. 2b) [6]. Surrounding the central compartment is a large vacuole that is dissected by cytoplasmic strands connecting the central and peripheral cytoplasm. The vacuole appears to be the resistant barrier minimizing CO₂ efflux, and the cytoplasmic strands are the channels for metabolite flux.

Suaedeae and the evolution of C₄ photosynthesis

With the discovery of two single-cell C₄ species in the Suaedeae, this tribe has become one of the most fascinating groups for C₄ plant biologists. The Suaedeae comprises four genera: Suaeda (100 species, 60% C₄), Alexandra (one C₃ species), Bienertia (one C₄ species), and Borszczowia (one C₄ species) [12–14]. Within the Suaedeae, five distinct C₄ origins are suspected – three in Suaeda, and one each in Bienertia and Borszczowia [5].

Why are the Suaedeae so prolific at evolving C₄ photosynthesis? The answer is probably associated with the extreme saline soils where Suaedeae species grow. High salinity restricts interspecific competition and favours characteristics enhancing water-use efficiency. Thus, novel traits that improve water-use efficiency, such as single-cell C₄ photosynthesis, might have had a competitor-free space in which to evolve.

In recent years, there has been much interest in turning C₃ crops, such as rice, into C₄ plants [15,16]. The major barriers to this goal are probably not biochemical but structural. C₃ species already have the necessary enzymes for C₄ photosynthesis, and some, such as tobacco and celery, can even operate a version of the C₄ cycle between roots and vascular parenchyma cells of photosynthetic stems [17]. The more significant hurdle is thought to be engineering Kranz leaf anatomy to allow for CO₂ concentration. With the discovery of single-celled C₄ photosynthesis, the task of engineering C₄ plants from C₃ species might be easier than previously thought [16]. Because these species show how C₄ photosynthesis can work in single cells, the obscure desert plants Bienertia and Borszczowia might be key to efforts to introduce the C₄ pathway into C₃ crops.

Acknowledgements

I am grateful for the assistance of Gerry Edwards and Helmut Freitag who provided advanced information about their work on Bienertia and valuable discussions regarding the biology of single-cell C₄ species.

References

15. Sheehy, J.E. et al. (2000) Redesigning Rice Photosynthesis to Increase Yield, IRRI and Elsevier Science

Rowan F. Sage

Dept of Botany, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2.

e-mail: rsage@botany.utoronto.ca

http://plants.trends.com

Students

Did you know that you are entitled to a 50% discount on a subscription to *Trends in Plant Science*?